Leyes de Mendel. Tercera ley de mendel: ley de la transmisión independiente

En este caso, Mendel no conforme con el hallazgo de la 1ra y 2da Ley se pregunta que pasaría si hiciera los mismos cruzamientos de la 1ra y 2da, pero teniendo en cuenta 2 características al mismo tiempo, ¿daría eso los resultados esperados de combinar lo que ocurría con cada característica por separado?

Enunciado

Al aparear a dos di-híbridos entre sí se observa en la descendencia una proporción fenotípica de 9:3:3:1, esto se debe a que los miembros de dos parejas de alelos distintos (2 genes diferentes) se transmiten independientemente uno del otro.

Establece que los dos caracteres son independientes y se combinan al azar. En la transmisión de dos o más caracteres, cada par de alelos que controla un carácter se transmite de manera independiente de cualquier otro par de alelos que controlen otro carácter en la segunda generación, combinándose de todos los modos posibles.

Así fué, veamos con el ejemplo del color y le agregamos ahora el largo del pelo (L: pelo corto) o alelo dominante y el (alelo recesivo)

Para obtener dihíbridos, apareó dos lineas puras para dos características, en este caso largo del pelo y color del pelo. Ambas con dos alelos. Pelo largo es recesivo frente al pelo corto, lo mismo que el color gris recesivo frente al negro.

Así fué, veamos con el ejemplo del color y le agregamos ahora el largo del pelo (L: pelo corto) o alelo dominante y el (alelo recesivo)

Para obtener dihíbridos, apareó dos lineas puras para dos características, en este caso largo del pelo y color del pelo. Ambas con dos alelos. Pelo largo es recesivo frente al pelo corto, lo mismo que el color gris recesivo frente al negro

Cruzamiento entre dihíbridos para las características Color del Pelo y largo del mismo Cruzamiento dihibridos gatos – CC by-nc-sa 4.0 – Gabriela Iglesias

Al aparear a los dihíbridos observó la proporción fenotípica de 9:3:3:1 o sea una proporción de 9 de cada 16 posibilidades de pelo negro y corto; 3 de pelo negro y largo; 3 de pelo gris y corto y 1 de pelo largo y gris.

Las proporciones que el observó tanto las genotípicas (PG) como las fenotípicas (PF) dan el resultado esperado ya que si a cada característica la tratamos por separado y las combinamos matemáticamente da exactamente las proporciones geno y fenotípicas de las 3ra. Ley. A modo de ejemplo:

Dd x Dd: PG: 1/4 DD, 1/2 Dd y 1/4 dd.

Los mismo ocurre con el largo del pelo: por ejemplo Ll x Ll: Daría iguales proporciones: 1/4 LL, 1/2 Ll y 1/4ll

Ahora si combino las posibilidades de Dd con Ll sería lo mismo que calcular probabilidades que de que sucedan una cosa y la otra juntas o sea que las debo multiplicar: 1/2 X 1/2: 1/4, o sea 4/16 que es la misma PG que se da la cruzar DdLl xDdLl y obtener individuos dihíbridos (DdLl): 4/16 (ver en el cuadro la PG esperada de los DdLl.

Al ver el diagrama de Punnet vemos que se pueden dar 9 genotipos posibles en distintas proporciones y solo 4 fenotipos en una proporción de 9:3:3:1. Si cada di híbrido forma 4 clases de gametas esto hace posible el resultado.

Con fotos de gatos reales se vería así

Cuadro de Punnet de la tercera Ley de Mendel. Proporciones geno y fenotípicas esperadas y observadas por Mendel a través de un ejemplo con gatos con dos características. Color (negro y azul) y largo del pelo (pelo corto y pelo largo). punnet 3ra ley gatos – CC by-nc-sa 4.0 – Gabriela Iglesias

¿Cuando donde y por que se cumple la 3ra ley de Mendel?

La 3ra ley de Mendel se cumple gracias a la coorientación de cada uno de los pares de homólogos en la Metafase I de la meiosis. Cada par de bivalentes (cromosoma materno y paterno) se ubican arriba o debajo de la placa ecuatorial e independientemente de como lo hacen los otros bivalentes.

Esto posibilita que si consideramos a un di-híbrido como usó Mendel tendremos 2 posibles coorientaciones que darán lugar a 4 clases de gametas en igual proporción (1/4) de cada clase.

Se puede observar en los dos siguientes esquemas

Primera disposición al azar de los cromosomas en Metafase I

Dos posibles coorientaciones de los cromosomas que luego originarán 4 clases de gametas. Gracias a que cada dihíbrido da 4 clases de gametas es que se originan 16 posibles genotipos que luego dan la proporción fenotípica de 9:3:3:1. Por Gabriela Iglesias

Por eso es que se observan 16 combinaciones de genotipos posibles en la descendencia, 9 son diferentes y se suman los que son iguales, dando al final 4 fenotipos posibles 9/16 de pelo negro y corto (D_L_); 3/16 de pelo gris y corto (dd_L_); 3/16 de pelo negro y largo (D_ll) y 1/16 pelo gris y largo (ddll)

Leyes de Mendel. Primera ley de Mendel o Principio de la Uniformidad

Mendel trabajó con arvejillas de jardín pero para fines didácticos voy a usar ejemplos con características del pelaje en gatos

Las leyes de Mendel, se explican hoy conociendo la ubicación de los genes en los cromosomas, y las divisiones celulares. Hoy sabemos que son los alelos, los genes y los cromosomas donde se encuentran los genes. El llamaba caracteres o factores a los que nosotros conocemos hoy como características fenotípicas como el color del pelo, y de las que son responsables uno o más genes. Esos genes pueden tener variantes (alelos) Por ello hoy explicamos estas leyes a través de la explicación de estos genes y alelos y cómo interactúan y se transmiten a la descendencia. Lo más maravilloso de Mendel es que, él no sabía de cromosomas, ni de genes, ni de alelos, ni de meiosis, sin embargo sus principios pueden ser explicados perfectamente por lo que ocurre con los genes y cromosomas en la división celular. En particular la meiosis donde se forman las gametas.

Durante la meiosis es decir, cuando se dividen las células de los tejidos germinales y se forman así los ovocitos y/o espermatozoides, los genes se mezclan, tanto los que están en cromosomas homólogos, mediante crossing over, como los que están en distintos cromosomas (la recombinación intercromosómica). Esta última es la explicación de la 3ra. Ley de Mendel o Ley de la transmisión independiente.

Enunciado

Si se cruzan dos razas o líneas puras que difieren para un determinado carácter, los descendientes de la primera generación son todos iguales entre sí (igual fenotipo e igual genotipo)  y a su vez de igual fenotipo que uno de los progenitores, independientemente de la dirección del cruzamiento (por ejemplo macho negro por hembra gris o viceversa).

Para llegar a las conclusiones que derivaron en el enunciado de la Ley de la Uniformidad (1ra Ley), cruzó dos líneas puras u homocigotas para una característica y lo que observó es que toda la F1 o filial 1 era uniforme fenotípicamente es decir todos los individuos de la F1, tenían el mismo aspecto y además que este se parecía al de uno de los progenitores.

El trabajó con varias características como el aspecto de la semilla (rugosa o lisa) y color (amarillo o verde)

En este caso como cada uno de los progenitores es homocigota (puro), solo le puede pasar a la descendencia el única variante del gen que porta. A las variantes de un gen se las denomina alelos.
Imaginemos que ocurriría con una característica como el color en los gatos. El gen del color de pelo en los gatos lo denominaremos gen D.  La variante “D”mayúsculas es el alelo dominante y expresa color Negro y la variante “d” minúscula es la que da el color gris.

Un alelo es dominante cuando en un individuo están combinados un alelo Dominante y un recesivo, es decir en los individuos heterocigotas Dd. En ellos se observa que el negro (D) domina sobre el (gris) y por ende ese individuo presenta color negro a pesar de portar el alelo d, pero D no permite su expresión. Todos los individuos poseemos dos genes porque somos diploides y tenemos dos juegos de cromosomas (uno que heredamos de nuestra madre y otro de nuestro padre). Por eso para un gen como este, podrá haber individuos homocigotas dominantes (DD), heterocigotas (Dd) y homocigotas recesivos (dd). En el caso de que Mendel hubiera trabajado con genes del color en gatos, esto es lo que habría observado.

Esquema del apareamiento entre dos líneas puras. En este caso gatos de color negro x gatos de color gris. G: simboliza las gametas que puede formar cada individuo. F1: filial 1 o descendientes posibles del cruzamiento. PG: Proporción genotípica y PF: Proporción fenotípica. Es decir 100% de los descendientes son heterocigotas y 100% del fenotipo negro o sea iguales a uno de sus progenitores. PrimeraleyMendelconfotos-1 – CC by-nc-sa 4.0 – Gabriela Iglesias

F1: es la Filial 1

Explicación

Es decir que cuando se cruzan dos líneas puras que son distintas en la expresión de un carácter como el color de pelo: negros y grises, toda la descendencia será de un solo genotipo (todos heterocigotas) y de un solo fenotipo (negros) igual que uno de sus padres y en este caso es independiente de que el macho sea gris y la hembra negra o macho negro por hembra gris. Nos daría el mismo resultado. Esto es porque este gen no tiene ninguna relación con el sexo de los individuos (no está en los cromosomas sexuales ni está influenciado por hormonas)

Predisposición genética a la adicción

Foto de la web, disponible aquí

Hace ya mucho tiempo, la gente de un gran blog con el que he colaborado me pidió escribir algunos artículos de divulgación. Entre ellos escribí uno llamado “Genes alcohol y rock and roll”. En mi Blog está disponible también aquí . Este artículo lo escribí en 2013. Hoy mirando el Blog de genotipia me encontré con dos artículos más recomendables y que hablan de temas similares y quizás están explicados de forma más sencilla.

Uno es Genes, drogas y rock & roll, del 2018 y hoy encontré otro llamado Genética y Adicción. Es interesante ver que los genes que predisponen la adicción parecen ser los mismos de los que hablé en el artículo original.

Pero vale la pena leerlos para adentrarse un poco más en esta temática tan compleja

Espero que les gusten

Saludos

Gabriela

Genética, ¿ética?

Foto de He Jiankui . Crédito de Mark Schiefelbein disponible en apnews

Ya he publicado varios artículos sobre la técnica para editar genes en el genoma denominada CRISPr. Esta nueva tecnología ha revolucionado la posibilidad de hacer terapia génica, corrigiendo errores en cierto genes en animales. Pero en humanos aún no ha sido aprobada.

Sin embargo el año pasado en 2018 un investigador de China, anunció en los medios, incluso mediante un video en YouTube que les adjunto abajo, que había logrado editar un gen de un receptor para el virus HIV en dos embriones humanos que nacieron y se llaman Nana y Lulu.

Lo logró porque realizó la modificación genética en las niñas cuando eran embriones que luego fueron implantados en su madre. Los padres en este caso son una mujer joven de 22 años y un varón de 32 con infección de HIV. Su objetivo era que los hijos fueran resistentes al virus mediante la inutilización de un gen que codifica para un receptor de las células, que interviene en la entrada y diseminación del virus. El gen del receptor es denominado CCR5 .

Lo que no es comprensible es como ocurrió esto sin haber mediado una protocolo científico ni sus resultados fueron publicados en ninguna revista científica, por ende se realizó fuera de las normas éticas de experimentación en humanos.

Este “científico” tenía un lugar de trabajo en Southern University of Science and Technology of China in Shenzhen, luego de especializarse en el extranjero en EEUU en Universidad de Rice y Standford.

Obviamente la Universidad donde esta el laboratorio dijo no estar al tanto de estas investigaciones y que se investigaría al respecto

Si bien el dice que las bebés no han tenido ningún efecto secundario, eso no es posible saberlo ahora, sobre la técnica no se sabe tanto como para estar seguros de la posibilidad de edición del genoma en otros sitios de mismo.

Fuentes:

  1. Más información sobre el tema en Genotipia y en este otro artículo
  2. Noticia de APNws
  3. Proyecto del investigador

Monografías de Alumnos: CRISP

Su aplicación en Mosquitos causantes de la Malaria

AUTORES: Sanchez, Martín, Shaide Chucair Palabras Clave: Malaria, Mosquito Transgénico, CRISPR-Cas9, Deriva Génica. 

Resumen: En el presente escrito se evalúan, dentro de un marco teórico, cómo se podrían modificar genéticamente los mosquitos portadores del agente causal de la malaria, un protozoario del género Plasmodium, utilizando el método de CRISPR-Cas9 sobre los insectos dentro del laboratorio, su posterior liberación en el medio ambiente, y su efectividad e impacto como posible vía para generar una deriva génica dentro de la población de mosquitos salvajes, considerando además los actuales métodos de control de la malaria, tanto los de origen genéticos como  los convencionales.

La malaria, también conocida como Paludismo, en el ser humano, es una enfermedad parasitaria causada por la infección de una o más de las especies del parásito protozoario intracelular Plasmodium ya sean Plasmodium falciparum, ovale, vivax y/o malariae (Heymann ,2011). Es una enfermedad mortal que es causada por dicho Plasmodium y transmitida por la picadura de mosquitos hembra del género Anopheles, los llamados vectores del paludismo.

Según la OMS: P. falciparum es el parásito causante del paludismo más prevalente en el continente africano. Es responsable de la mayoría de las muertes provocadas por el paludismo en todo el mundo. En cambio, P. vivax es el parásito causante del paludismo dominante en la mayoría de los países fuera del África subsahariana.

Se calcula que en 2016 hubo 216 millones de casos de paludismo en 91 países, las muertes fueron de 445 mil personas, lo que es una cifra demasiado alta ya que se trata de una enfermedad prevenible y tratable de manera relativamente fácil, sin embargo, muchas de las áreas afectadas son de recursos extremadamente precarios y bajo constante conflicto civil y militar, lo cual dificulta mucho no solo el alcance de ayuda exterior sino cualquier tipo de intervención interna.

La prevención de esta enfermedad se basa fuertemente en la lucha antivectorial para reducir la transmisión del paludismo. Según la organización mundial de la salud en 2018: “Para el control efectivo del vector, recomienda proteger a toda la población que se encuentra en riesgo de infectarse. Hay dos métodos de lucha contra los vectores que son eficaces en circunstancias muy diversas: los mosquiteros tratados con insecticidas y la fumigación de interiores con insecticidas de acción residual.”

Entre 2015-2017 se realizó la distribución de 624 millones MTI o mosquiteros tratados con insecticida, (principalmente de larga duración), un aumento sustancial con respecto a los 465 millones del 2012-2014. De todos estos, el 82% o 459 millones, fue entregado en la región de áfrica subsahariana. (OMS, 2018)

La malaria es endémica en más de 100 países, especialmente en América Central y del Sur, República Dominicana, Haití, África, Asia (India, Sureste asiático y Oriente Medio) y Pacífico Sur.

En el presente escrito se evalúan, dentro de un marco teórico, cómo se podrían modificar genéticamente los mosquitos portadores del agente causal de la malaria, un protozoario del género Plasmodium, utilizando el método de CRISPR-Cas9 sobre los insectos dentro del laboratorio, su posterior liberación en el medio ambiente, y su efectividad e impacto como posible vía para generar una deriva génica dentro de la población de mosquitos salvajes, considerando además los actuales métodos de control de la malaria, tanto los de origen genéticos como los convencionales.

 Figura 1. Distribución mundial de la malaria. Fuente: OMS, 2010

En el 2017 los países endémicos de Malaria invirtieron 3,1 mil millones de dólares para el control y eliminación de la enfermedad, 2,2 mil millones se gastaron en la región de África seguida por 300 millones en el sudeste asiático, en las Américas 200 millones y el este  Mediterráneo y Pacífico Occidental 100 millones cada uno, a pesar de esta cantidad de inversión no se llega a alcanzar las metas de la ETM (Estrategia Técnica mundial contra la Malaria), esta tiene como objetivo una reducción del 40 por ciento de incidencia en casos de malaria a nivel mundial. Para alcanzar las metas de la ETM a 2030 se estima que la financiación anual para la malaria tendrá que aumentar en al menos 6,6 mil millones por año

hasta el 2020.

“El conocimiento del ciclo de vida de este parásito indica que el estadio más vulnerable del Plasmodium es el ooquiste encontrado en el intestino medio (de sólo cinco ooquistes por insecto), razón que lo convierte en el primer blanco de ataque empleando mosquitos transgénicos que expresen moléculas efectoras antiespasmódicas”.(Noguez Moreno, et al 2017)

A lo largo de los años los avances en la ciencia y tecnología genética gracias a quienes la desempeñan, ya sean investigadores, científicos o genetistas nos ayudan a comprender y hasta poder solucionar mediante el uso de ingeniería genética problemas relacionados a la salud humana y animal.

Los métodos de biología molecular y de las ciencias genómicas generan conocimientos más precisos de la fusión y expresión genética, lo que es fundamental para el entendimiento de la fisiología molecular de insectos y en la generación de MTs (mosquitos transgénicos) para el control de insectos y las ETV (enfermedades transmitidas por vectores).(Noguez Moreno, et al., 2017)

Históricamente dentro de las estrategias utilizadas para el control de enfermedades vectoriales con respecto a la manipulación genética, nos podemos encontrar con una amplia variedad de enfoques y diferentes acercamientos a la problemática. Segun Noguez Moreno,  et al., 2017  estos pueden dividirse en un Control “Clásico” y el uso de Mosquitos Transgénicos o MTs; Así, el primero se enfoca en generar insectos estériles o bien con reproductibilidad reducida por medio de productos químicos o radiación sobre los huevos y luego que estos sean liberados al medio ambiente natural. Si bien este método fue el más utilizado después de la segunda guerra mundial por más de 4 décadas, debido al coste de mantenimiento del equipo, de la mano de obra y de la liberación de los insectos, prácticamente ha quedado en desuso.(Noguez Moreno et al., 2017)

Figura 2: Fuente: Noguez Moreno et al.,2017

El uso de MTs por otro lado cobra impulso con cada nuevo avance en el área de la genética; Pueden encontrarse así los Mosquitos Refractarios, es decir, que expresan una cualidad que los hace inmunes a la infección del agente en si, los Mosquitos Transmisores de Genes Letales de Uno o Dos Componentes, que básicamente consiste en introducir un gen que se comporta como letal (produce la muerte del portador) cuando se encuentra en heterocigosis, los Mosquitos con Fenotipo sin Vuelo, donde se les genera una modificación en su capacidad para volar y son eliminados naturalmente por depredadores o bien no pueden alimentarse ni volar, y por último, pero no menos importante la Deriva Génica o Genéticamente Dirigido (GD por Gene Drive en inglés), donde se fuerza la imposición de la presencia de un alelo sobre otro dentro de una población generando por ende la desaparición de este último.(Noguez Moreno, et al., 2017)

Naturalmente la deriva génica es una fuerza evolutiva que ocurre como un cambio en las frecuencias genéticas debido a un resultado de eventos aleatorios de una generación a la otra, puede ser muy efectiva y marcada en poblaciones pequeñas, además podría resultar en la fijación de un alelo, es decir, que este termine siendo el único presente en la población.

Figura 3. El concepto de genética dirigida (del inglés Gene Drive: GD) lo podemos ejemplificar en un caso hipotético de un transgen que bloquea la transmisión de la malaria (pero que no tiene valor selectivo en la población de insectos). Se podría impulsar el incremento en su frecuencia genética en la población, sustituyendo a los silvestres (sin color) a través de una construcción genética que incluya un gen que proporciona una ventaja selectiva (Gene Drive o GD) (en rojo). Genética dirigida es lo mismo que decir deriva génica.  Fuente: Noguez Moreno, et al., 2017

De manera artificial con el fin de modificar poblaciones; la deriva génica se puede usar  tanto como para que una nueva población de Mosquitos Refractarios reemplace a otra vieja o para la supresión gradual de una especie al generar deriva génica sexual. Los métodos más comunes son los Elementos Medea, (elementos alélicos “egoístas” que se imponen sobre su contraparte al generar la muerte de la cría que carece del elemento), el uso de las Bacterias del Género Wolbachia, (el cual se comporta también como elemento génico egoísta y de carácter simbiótico que puede transmitirse por vía materna) y la aplicación de CRISPR-Cas9, tanto sobre un gen como también sobre la frecuencia sexual dentro de una población.

Figura 4. Fuente: Noguez Moreno, et al., 2017.

La manipulación de la frecuencia de un gen con CRISPR-Cas9 consiste básicamente en introducir dentro de un gen esencial un segmento exógeno con la información que dotaría de inmunidad al individuo contra el agente, así cualquier intento de eliminar esta seccion por parte del sistema natural de reparación del ADN resultaría en la muerte del individuo en lugar de generar una especie de “resistencia”, y si a esto se le suman más segmentos exógenos el proceso de resistencia se vuelve indetectable poblacionalmente.

La manipulación de la frecuencia de un sexo usando CRISPR-Cas9 es una de las estrategias más nuevas, recién introducida en 2016, y consiste en que Cas9 ataque un gen alosómico que reside en uno de los cromosomas sexuales con una incidencia en el nacimiento de machos de casi un 90%, y debido a que estos no son hematofagos, cualquier transmisión de vía salivaria quedaria incapacitada,  además esto facilita la deriva génica ya que solo los machos la producen y no las hembras.

Figura 5.Genética dirigida (GD) utilizando el sistema CAS9-ARN guía. Las ventajas incrementan introduciendo varias unidades de ARN guía, lo que aumenta la frecuencia de corte y dificulta la evolución de alelos resistentes a GD a niveles indetectables. Al elegir sitios diana dentro de un gen esencial, debe ser modificados para hacer un alelo resistente e incluirlo en la construcción para unirlos a la construcción genética que lleva el sistema CAS9-ARN guía, y tanto al gen marcador, como al gen refractario (por ejemplo). Cualquier acontecimiento que elimine los sitios blanco del sistema CAS9-ARN, producirán letalidad en lugar de crear una unidad de alelo resistente, lo que aumenta aún más la robustez de la construcción genética GD y favoreciendo la sustitución poblacional de insectos. Fuente: Noguez Moreno, et al., 2017

La tecnología CRISPR/Cas9 es una herramienta molecular utilizada para “editar” o “corregir” el genoma de cualquier célula. Sería algo así como unas tijeras moleculares que son capaces de cortar cualquier molécula de ADN haciéndolo de una manera muy precisa y controlada. La capacidad de cortar el ADN es lo que permite modificar su secuencia, eliminando o insertando nuevo ADN, se basa en un sistema natural de defensa bacteriano contra los virus bacteriofagos. Estos virus infectan bacterias al inyectarle su material genético, luego este se aprovecha de la maquinaria interna para fabricar otras réplicas de sí mismo, generalmente mata a la bacteria en el proceso. Si la bacteria sobrevive puede utilizar fragmentos del ADN vírico para incluirlo dentro de su propio material genético y así contar con una “copia de seguridad” que permite identificar rápidamente una posterior invasión de ese mismo material. (Ann Ran, et al., 2013)

Figura 6. Ilustración de cómo ingresa originalmente el material genico viral dentro de la bacteria, y los pasos subsecuentes para registrarlo y utilizarlo como propio dentro del sistema defensivo CRISPR. Fuente:Gantz, 2015.

El ADN tomado del virus son segmentos de bases repetidas múltiples veces y a su vez estos fragmentos también se repiten dentro del propio ADN, no suelen ser muy largos y están condensados, por esto se llaman repeticiones palindrómicas cortas agrupadas y regularmente espaciadas o Clustered Regularly Interspaced Short Palindromic Repeats o CRISPR en inglés. (Ann Ran et al, 2013)

“Cuando un virus entra dentro de la bacteria toma el control de la maquinaria celular y para eso interacciona con distintos componentes celulares. Las bacterias que tienen este sistema de defensa tienen un complejo formado por una proteína Cas unida al ARN producido a partir de las secuencias CRISPR. Entonces el material génico del virus puede interaccionar con este complejo, al ocurrir esto el material genético viral es inactivado y posteriormente degradado. Pero este sistema va más allá. Las proteínas Cas son capaces de coger una pequeña parte del ADN viral, modificarlo e integrarlo dentro del conjunto de secuencias CRISPR. De esa forma, si esa bacteria o su descendencia se encuentra con ese mismo virus, ahora inactivará de forma mucho más eficiente al material genético viral. Es, por lo tanto, un verdadero sistema inmune de bacterias”. (ver Figura 6) (Moran, 2015)

Esto puede aplicarse al ADN de eucariotas, con un CRISPR-Cas9 sintético y en un laboratorio, conociendo la secuencia que se desea cambiar, se puede generar un ARN complementario a dicha secuencia y agregarla al CRISPR-Cas9, el cual termina cortando esta sección. Luego pueden ocurrir dos posibles resultados derivados de las dos grandes vías existentes para la reparación del ADN, y estos son la vía de unión de extremos no homólogos, cuya sigla en inglés es NHEJ, que presenta tendencia a errores y la vía de reparación dirigida por homología cuya sigla en inglés es HDR y es la que presenta una mayor fidelidad, así que puede optarse por una u otra dependiendo del resultado que se busque con respecto a la modificación de ese gen.

Figura 7. La edición de genomas a través de ARN guía-CAS9. La nucleasa Cas9 y la guía de ARN, debe ser primero introducida en la célula diana. Esto se logra mediante introducción por ingeniería genética. El ARN guía dirige a Cas9 para unir secuencias de ADN diana. En el blanco se forma una burbuja que debe estar flanqueada por un adecuado motivo adyacente (PAM;Motivo adyacente de protoespaciador), con secuencia NGG, que refiere a que N es cualquier nucleobase seguida de dos nucleobases de Guanina. Sí el ARN guía es idéntica con solo unos desajustes en el extremo 5 ́del espacio de hibridación, Cas9 cortará las dos cadenas del ADN generando extremos romos. Si se suministra con una plantilla de reparación que contiene los cambios deseados y homología a las secuencias a ambos lados de la ruptura, la célula puede utilizar la recombinación homóloga para reparar la ruptura mediante la incorporación de la plantilla de la reparación en el cromosoma. De lo contrario, la ruptura será reparada uniendo los extremos, lo que resulta en la pérdida de algunos nucleótidos y la interrupción del gen. Fuente: Noguez Moreno, et al.,2017

 

La activación de la vía NHEJ ocurre cuando no hay presencia de un molde reparador, así las DSB (Double Strand DNA Break) son unidas dejando “cicatrices” en forma de deleciones o adiciones, es decir, mutaciones. De esta manera se usa la vía NHEJ para producir “knockout” génico sobre secciones indeseables del ADN, al exponer codones de stop de manera prematura.

La activación de la vía HDR, si bien es mucho más precisa, ocurre a frecuencias mucho más variables que NHEJ, y suele activarse naturalmente en células que se están dividiendo, además su eficiencia puede variar dependiendo del tipo de célula y su estado de división, así como del lugar y amplitud del segmento modificado de ADN. La vía HDR produce modificaciones muy puntuales y definidas sobre un locus frente a un molde reparador introducido exógenamente, el cual puede ser la clásica doble hebra de ADN complementario y antiparalelo o una sola hebra de ADN, este último método puede ser útil para introducir mutaciones de segmentos extremadamente pequeños (tan chicos como un solo nucleótido) dentro del genoma, de manera simple y rápida.(Ann Ran, et al., 2013)

Quizás la propiedad más importante es que CRISPR-Cas9 puede no solo cortar, sino que (por medio de modificaciones artificiales dentro del laboratorio) introducir una nueva secuencia de ADN y por lo tanto, nuevos genes dentro de la cadena, permitiendo un gran abanico de alteraciones sobre prácticamente cualquier organismo. En este caso se planteará el uso teórico de CRISPR-Cas9 tipo 2, el cual utiliza crARN (CRISPR ARN asociado), que actúa como guía codificante para ARN, y otro segmento de crARN de trans-activación o trancrARN, el cual facilita el proceso. Cada uno de estos crARN está compuesto de una secuencia de 20 nucleótidos guia.(Ann Ran, et al, 2013).

Un estudio realizado por Gantz, et al., en 2015 estudia o analiza  la modificación de Anopheles stephensi por medio de CRISPR-Cas9 y la producción de MTs, al alterar genéticamente uno de los cromosomas de los machos, luego copiaron el segmento de 17.000 pares de bases al cromosoma homólogo utilizando la vía de reparación HDR de una manera exacta y en un sitio específico del ADN, de esta manera y junto a la deriva génica producida en la naturaleza, se logró una incidencia del 99,5% aproximadamente de la frecuencia del gen sobre la descendencia de la cruza entre los machos transgénicos y las hembras salvajes. En contraste con esto, se encontró que la modificación sólo en las hembras no conlleva al mismo éxito, debido a que los cromosomas no son reparados por la vía HDR, más exacta, sino por NHEJ; Así es como se producen muchas mutaciones en el proceso y por lo tanto, se termina dando una herencia de tipo pseudo mendeliana de los genes modificados, y no tiene el mismo éxito, de esta manera se estima que se podría lograr la erradicación de la enfermedad en unas 10 generaciones de mosquitos, es decir, en un periodo de aproximadamente 1 año. Este modelo que es completamente teórico está basado en el uso exclusivo de mosquitos machos transgénicos liberados al medio ambiente ya que ellos son quienes tienen la posibilidad de generar una deriva génica, aunque hay un cierto aporte por parte de la descendencia de las subsecuentes hembras modificadas hijas de los machos liberados.

Conclusiones y Comentarios Finales:

CRISPR-Cas9 es una poderosísima herramienta para poder moldear al mundo y los animales que lo habitan, pero tiene como limitación que es demasiado nueva y no ha sido testeada en el campo lo suficiente, de esta manera no termina habiendo una respuesta definitiva de si será o no la salvación a todas las ETV y otras enfermedades relacionadas, aun así el futuro necesitará cada vez más nuevas y mejores estrategias para combatirlas, y más si se considera que el presupuesto de la OMS con la ETM debe duplicarse de 3 mil millones actuales a 6 mil millones en menos de un año si se quiere seguir con el plan estimado, es decir, reducir el paludismo en un 40% para el 2030.  Tal vez la deriva génica dada por los mosquitos transgénicos no sea la respuesta, pero todavía es demasiado pronto para decirlo, ya que si bien es fácil quitar una proteína o lípido que es aprovechado por un virus o un parásito, esto es biología, pero nada cumple solo una función ni es simplemente tan fácil, debido a que esa proteína podría cumplir muchas otras funciones importantes en otro lado, así que habrá que considerar los pros y contras, ¿cuáles podrían ser las futuras repercusiones ambientales?, ¿es factible económicamente hablando?, y tal vez más importante, ¿cuánto pesan estos argumentos frente al medio millón de personas que mueren al año?.

Bibliografía

Ann Ran, F., & Scott, D. (2013). Genome engineering using the CRISPR-Cas9 system [Ebook].

Gantz, V. (2015). Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi [Ebook]. California.

Heymann, D. (2013). El control de las enfermedades transmisibles [Ebook] (19th ed., pp. 485-508). Washington DC.

Moran, A. (2015). ¿Qué es la tecnología CRISPR/Cas9 y cómo nos cambiará la vida? [Ebook].

Noguez Moreno, R. (2017). Nuevas estrategias de control vectorial:mosquitos transgénicos[Ebook]. México.