Editar, cortar y pegar el genoma. Técnica CRISPR

Hola a todos. En esta ocasión quería dejarles una nota muy interesante sobre el tema del sitio Nexciencia de la facultad de Ciencia Exactas y Naturales de la Universidad de Buenos Aires.

Les dejo a su vez un video que puede ayudar a comprender la técnica:

Tecnica de CRISPR. Imagen de http://www.genome-engineering.org

Tecnica de CRISPR. Imagen de http://www.genome-engineering.org

Les copio y pego la nota aquí mismo: (Fuente: http://nexciencia.exactas.uba.ar/)

 

Nueva técnica de manipulación genética

CRISPR: el editor de genes

TAPA — POR EL 07/09/2016 A LAS 12:46

La llaman la técnica de biología molecular más innovadora del siglo XXI. Permite editar, cortar, pegar y cambiar genes de una manera fácil y sin necesidad de equipamientos caros de laboratorio. ¿Qué es CRISPR/Cas9 y por qué despierta amores y odios?

Está en boca de todos y ha llenado varias páginas en las revistas científicas más prestigiosas. Muchos ya la consideran el desarrollo más importante de los últimos años y comparan su impacto al que tuvo la PCR (reacción en cadena de la polimerasa), que sirve para aumentar el número de copias de porciones de ADN. Desarrollada hace poco más de cuatro años, hoy enciende debates en todo el mundo. Pero ¿qué es exactamente la tecnología CRISPR/Cas9?

A grandes rasgos, es una técnica que permite editar genes. Así de sencillo, así de complejo. Ahora se pueden cortar, pegar, empalmar y eliminar secuencias de ADN de una célula e incluso crear genes a medida. Permite introducir mutaciones puntuales, generar organismos modelos para estudiar enfermedades y, a futuro, muchos especulan que podría servir para tratar patologías con base genética.

Pero, por otro lado, nuevas preguntas empiezan a surgir en torno a su alcance y potenciales efectos. ¿Quién regula qué organismos y cómo se pueden modificar?

En el inicio

Todo comenzó con una pregunta: ¿cómo hacen las bacterias para defenderse de las infecciones virales? Diferentes trabajos habían notado que, una vez que una bacteria es atacada por un virus, genera una especie de ‘inmunidad’ que le permite resistir su ataque durante una nueva infección.

La clave reside en el sistema CRISPR. Cuando el patógeno ingresa a la bacteria, se activa una maquinaria que corta secuencias del genoma del invasor y las integra en los sitios CRISPR (por el acrónimo en inglés de Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Interespaciadas) del propio genoma bacteriano. Estas secuencias son luego transcriptas a pequeños ARN, que a su vez se unen a endonucleasas bacterianas (Cas9 es una de ellas) para ‘cortar’ el genoma de los patógenos invasores justamente en donde se encuentran esas mismas secuencias, y así desactivarlos.

Tras descubrir este sistema, los investigadores usaron esos mismos principios para poder replicar el mecanismo en cualquier otra célula y ahora se pueden editar pequeñas porciones de cualquier genoma a voluntad.

El microbiólogo rosarino Luciano Marraffini es profesor en el Laboratorio de Bacteriología de la Universidad Rockefeller, Estados Unidos. Y, a la sazón, su trabajo contribuyó al descubrimiento del sistema.

“Es una técnica que funciona muy bien y es muy efectiva”, cuenta. “En laboratorios el uso más inmediato es para hacer genética en organismos que antes no se podían modificar. Por ejemplo hace poco conocí a una persona que trabaja con mariposas y estudia sus ojos, algo bastante fuera de lo común para organismos modelo. Ellos inyectan Cas9 muy fácilmente en los huevos y pueden hacer un mutante del gen que quieran”, agrega.

¿Por qué tiene tanto impacto esta técnica? ¿Qué ventajas tiene en relación a otras herramientas para la edición de genes? Marcelo Rubinstein es investigador Superior del CONICET y profesor en Exactas-UBA. En su laboratorio del Instituto de Investigación en Ingeniería Genética y Biología Experimental (INGEBI) se especializan en el diseño de animales modificados genéticamente para diferentes investigaciones y, desde hace dos años, trabajan con CRISPR/Cas9.

Para Rubinstein, los beneficios de esta técnica pasan por dos puntos. “Por un lado, permite hacer edición de genomas en cualquier organismo: bacterias, eucariotas unicelulares, plantas y animales vertebrados e invertebrados: es un sistema universal. Y la otra gran ventaja es que es una técnica relativamente sencilla de usar, que tiene una gran capacidad de atravesar fronteras y de incorporarse rápidamente a muchos laboratorios e institutos. No es necesario tener aparatos sofisticados o técnicos especialistas que las manejen, cualquier persona la puede usar”, dice.

Marraffini agrega que la están usando estudiantes de licenciatura durante sus pasantías en laboratorios porque “es muy fácil y muy eficiente” y en el laboratorio de Rubinstein, a dos años de la adopción de esta técnica, ya hay cuatro tesis de doctorado que se basan en su uso.

Impacto y alcance

Quizás una de las principales implicancias de la edición de genes con esta técnica es la posibilidad de usarla en terapia génica para tratar ciertas enfermedades.

La terapia génica, que se viene estudiando hace más de 30 años, se refiere a la introducción de genes específicos dentro de las células de pacientes para tratar determinadas condiciones o patologías o la reparación de mutaciones. Sin embargo, esto se encuentra con dos obstáculos. El primero es metodológico, el segundo tiene que ver con su aplicación.

Con respecto al primero, Marraffini comenta que “CRISPR/Cas9 funciona muy bien in vitro pero llevarlo a terapia génica es más complejo”. Y esto tiene que ver en gran parte con cómo hacer que la secuencia modificada llegue a su objetivo (el gen ‘blanco’) en un organismo ya desarrollado, es decir que llegue no solo al núcleo de la célula, sino que además sea introducido en el lugar del gen defectuoso. “El problema del delivery es el mismo problema desde que se empezó a pensar cómo hacer terapia génica”, cuenta Marraffini. En la actualidad se está trabajando con diferentes técnicas, pero aun falta un largo camino por recorrer.

El segundo obstáculo tiene que ver con su aplicación. Actualmente hay muchos debates acerca del alcance de esta técnica, su uso o no para el tratamiento de patologías e incluso un incipiente debate acerca de su propiedad: ¿son patentables los resultados de las modificaciones génicas? “Obviamente hay cuestiones éticas muy complejas y serias”, cuenta Marraffini, quien aclara que no es especialista en bioética, que no es su campo de estudio “y en realidad esas son viejas discusiones que ahora parecen más cercanas, porque lo que antes era ciencia ficción ahora parece más al alcance de la mano”.

Panorama

A nivel metodológico, tanto Marraffini como Rubistein coinciden en que una de las limitaciones es cuánto se conoce del genoma, su regulación y funciones de los organismos con los que se va a trabajar. Y, la segunda, la posibilidad de tener off-targets, o blancos no deseados.

En primera instancia, “el conocimiento que se tiene (sobre el genoma humano) no creo que sea suficiente para hacer lo que uno quiera. Uno sabe cómo introducir una mutación para generar ciertos cambios, pero no estoy seguro de que uno pueda hacer mucho más que eso”, cuenta Marraffini, y agrega: “En potencia se podría hacer cualquier cosa, pero en la realidad los conocimientos para hacer muchas de las cosas que leímos en la ciencia ficción todavía no están y no van a estar por mucho tiempo”.

La segunda limitación tiene que ver con la técnica. “Cada vez que uno trata de hacer una mutación en un sitio específico existe la posibilidad de que se mute a la vez algún otro gen” que tenga una secuencia similar, agrega Marraffini.

Para Rubinstein, “la única forma de evitarlo es tener completamente secuenciado el genoma de la especie para poder comprobar que la región a modificar sea única” y que no haya otras regiones con secuencias iguales.

El valor de la ciencia básica

El debate continúa, y CRISPR/Cas9 está en el centro. Mucho queda por hacer y las posibilidades que se abren son muy amplias. Sin embargo para Marraffini, quien hizo su carrera de grado en la Universidad Nacional de Rosario, es importante destacar el valor de la ciencia básica en este tipo de investigaciones.

“Cuando empecé a trabajar con CRISPR se sabía poco y solo había algunas predicciones bioinformáticas de que podía ser parte del sistema inmune que le permite a las bacterias luchar contra las infecciones virales. Nosotros corroboramos eso y además yo hice uno de los primeros experimentos que definió que CRISPR ataca a la secuencia misma de ADN. Otros grupos estudiaron otros aspectos, pero todos estos descubrimientos son pura ciencia básica y no tenían en mente ningún tipo de aplicación. Esto habla de la importancia de subvencionar la ciencia básica, porque tal vez CRISPR sea la tecnología más revolucionaria del siglo XXI y quizás se puedan hacer cosas que parecían de ciencia ficción. Y todo surge de gente que estaba interesada en saber cómo se defendían las bacterias de los bacteriófagos, algo muy básico. La moraleja es que la ciencia básica se necesita y se tiene que subvencionar para que se puedan lograr aplicaciones médicas que contribuyan directamente a la sociedad”, concluye.

Tecnica CRISPR. Imagen de http://cbi.hzau.edu.cn

Tecnica CRISPR. Imagen de http://cbi.hzau.edu.cn

Anuncios

Curso 2016 Genética Básica. Pizarra digital

Hola a todos mis alumnos y bienvenidos al curso de genética Básica de la carrera de Veterinaria de la UNRN.

Les quiero dar la bienvenida y espero que disfrutemos juntos de la aventura de la genética.

Quería en particular dejarles el material con el que vamos a trabajar en el curso. Son dos pizarras digitales, una para la primera parte de la materia y otra para la segunda.

Se las dejo a ambas en este sitio para que puedan acceder todas las veces que sea necesario, imprimir o leer online, tanto las clases, como ver los videos o leer la bibliografía y/0 sitios recomendados. Recuerden que para descargar el materia debe poner (ver original)

Saludos

Espero les sirva y nos vemos en las clases

 

1ra parte

https://padlet.com/embed/k6qhwtzpa0

Link directo a la pizarra: https://padlet.com/chickmhc/k6qhwtzpa0

 

2da parte

 

Link directo ala pizarra: https://padlet.com/chickmhc/a4un2yrmeh

 

 

Saludos

Gaby

¿Como se ve el ADN?

Crédito: Gabriela Iglesias

Crédito: Gabriela Iglesias

Esta pregunta me la hace muy a menudo mis alumnos porque cuando uno realiza una extracción de ADN, el ADN es viscoso pero transparente, entonces como se ve luego en un gel de agarosa si es transparente, tanto el gel como el ADN.

Hasta hace unos años atrás, se usaba el loading buffer con Azul de metileno paa indicar por dónde estaba migrando el ADN por el gel pero para poder realmente ver el ADN se suaba el Bromuro de etidio que es un colorante que bajo luz UV se pude visualizar y como se intercala entre las bases de ADN nos muestra el ADN. Se usa un aparato llamado transiluminador UV

Hoy leyendo un artículo de Vicky Doronina en BitesizeBio.com me encontré con una interesante historia que relata el comienzo y el fin de la era del bromuro de etidio. Como el artículo está en inglés, les quería dejar la traducción

Durante varias décadas, bromuro de etidio (EtBr) era la tinción característica del biólogo molecular para la visulaización de ADN. Ahora, debido a la paranoia colectiva sobre sus supuestos efectos cancerígenos, EtBr se está consignado a los libros de historia, junto con los gradientes de cloruro de cesio (CsCl) , la clonación en fago lambda, y la secuencia de ADN en el laboratorio. Es hora de tener una mirada histórica a donde todo comenzó.

Un comienzo lento

En la década de 1960 el ADN viral, el de los plásmidos y el ADN mitocondrial se separó del ADN genómico de peso molecular mucho más alto por centrifugación de alta velocidad en gradientes de CsCl, una versión muy simplificada de la misma proceso todavía se utiliza durante las preparaciones de ADN de (minipreps) plásmidos: piezas de ADN cromosómico junto con restos celulares separado de  las moléculas de plásmidos más ligeros, compactadas por centrifugación.

A diferencia de los 15 min a 12.000 xg  utilizados para minipreparaciones modernas, la separación en CsCl a cientos de miles de xg tomó días. En 1966 H. Thorne publicó dos artículos (1, 2), en el que mostró una posibilidad de separar el ADN del virus del polioma a partir del ADN de la célula huésped usando electroforesis en gel de ADN radiomarcado.

Seis años después de los artículos de Thorne, investigadores holandeses en ADN mitocondrial (C. Aat y P. Borst)  entran en la historia. Al igual que con muchos avances científicos, era como el resultado de que algo salga mal, lo que les llevó a su descubrimiento- en su caso, la ruptura de la ultracentrífuga.

Conocer la existencia de documentos de Thorne, los investigadores decidieron ver si podían separar el ADN mitocondrial en un gel. Se utilizaban de forma rutinaria en los gradientes de EtBr para separar diferentes formas de ADN mitocondrial (superenrollado, circular y lineal), era lógico para usarlo en los geles también. Además, los autores dicen que “siempre admiraban las bandas de color naranja brillante en los gradientes”, por lo que el placer estético jugó un papel en el desarrollo de la ciencia.

A partir de los primeros en adoptarlo a la actualidad

Pero el resto no es historia. Aunque la separación de ADN mitocondrial en un gel usando EtBr ha resultado tan exitoso que Aat y Borst Nunca volvieron a reparar la centrífuga, no siguieron trabajo (1.972 3) con más estudios en esta área (4).

Una revisión histórica actual por un ganador del Premio Nobel de la R. Roberts(5) cita otro artículo escrito por Sharp et al (1973) (6) donde se explicaba como usar una tinción de EtBr durante la separación del ADN por electroforesis de ADN. Aunque de Sharp et al utiliza la misma lógica de comenzar con tinción EtBr en gradiente, seguido de tinción de geles después de la corrida electroforètica y / o la adición de EtBr a los geles como Aat y Borst, que no citan el documento anterior. Formalmente, Aat y Borst tienen una prioridad porque publicaron el método primero, pero de el artículo de Sharp et al se cita 3 veces más frecuentemente, probablemente debido a su incorporación a la utilización de otra tecnología de vanguardia 1970 – digestión del ADN con enzimas de restricción.

¿Donde esta ahora?

Ahora, a principios del 21 st siglo EtBr está siendo ampliamente utilizado en muchos laboratorios aún, pero la combinación de su supuesto efecto cancerígeno y su exigencia de luz UV ha causado una fuerte presión en la salud y seguridad, para reemplazarlo en muchas instituciones. Muchos laboratorios fueron “EtBr libre” y probablemente no hay vuelta atrás. Varios tintes o tinciones alternativas están actualmente en uso como sustituto de EtBr, usted puede leer sobre ellos en este artículo.

La historia del ascenso y caída de EtBr muestra un patrón visto a menudo con técnicas científicas: saltos intuitivos basados ​​en ideas previas, a menudo olvidados; un comienzo lento seguido por la adopción generalizada. Por último, el descenso en una controversia de quién lo usó por primera vez.

Literatura:

Literature:

  1. Thorne H. V. Electrophoretic separation of polyoma virusDNA from host cell DNA. Virology (1966), 29, 234 – 239.
  2. Thorne H. V. Electrophoretic characterization and fractionation of polyoma virus DNA. J. Mol. Biol. (1967), 24, 203 – 211.
  3. Aat C. and Borst P. The gel electrophoresis of DNA.Biochim. Biophys. Acta(1972), 269, 192 – 200.
  4. C. Aat and P. Borst. Ethidium DNA Agarose Gel Electrophoresis: How it Started. IUBMB Life, 2005, 57(11): 745 – 747
  5. Roberts R.J. How restriction enzymes became the workhorses of molecular biology.PNAS (2005), 102(17), 5905 – 5908
  6. Sharp P. et al. Detection of two restriction endonuclease activities in Haemophilus parainfluenzae using analytical agarose–ethidium bromide electrophoresis. Biochemistry (1973), 12(16), 3055-63.

Espero les hasya gustado como a mí.

Si prefieren leer el artículo orginal en inglés, les dejo el link abajo

Fuente: http://bitesizebio.com/25292/burning-bright-a-brief-history-of-ethidium-bromide-dna-staining/?utm_content=24584782&utm_medium=social&utm_source=facebook

¿Qué son las enfermedades raras?

¿Qué son las enfermedades raras?

“Se les llama así a las enfermedades que afectan a un porcentaje muy limitado de la población. Hay distintas clasificaciones, pero podríamos considerar como rara una enfermedad que afectara a menos de 5 de cada 10.000 habitantes de una determinada población. Según la Organización Mundial de la Salud, existen en torno a 7.000 enfermedades raras que padece el 7% de la población mundial, unos 28 millones de personas en Europa y 3 en España. Se trata de enfermedades muy graves, crónicas, degenerativas, muchas desconocidas para el gran público y de características muy distintas, lo que impide un tratamiento generalizado. Suelen tener un comienzo muy precoz: dos de cada tres aparecen en los primeros dos años de vida. En la mitad de los casos afectan al desarrollo motor, sensorial o intelectual, lo que lleva a una discapacidad en autonomía a uno de cada tres enfermos. Las cifras de mortalidad son muy altas: el 35% de las muertes llegan antes de un año; el 10%, entre uno y cinco años, y el 12% entre los cinco y quince años. A la dureza de la enfermedad se une la escasa financiación en investigación y el olvido de los laboratorios farmacéuticos ante la imposible recuperación económica de una inversión, dado el escaso número de enfermos que consumirían ese fármaco. Hay alguna enfermedad, por ejemplo, que sólo afecta a 6 personas en toda España. Pero otras, como la esclerosis lateral amiotrófica, la padecen cerca de 6.000 personas. Datos tomados de la web de la Federación Española de Enfermedades Raras: http://www.enfermedades-raras.org/index.php/enfermedades-raras/enfermedades-raras-en-cifras”  Extractado de la editorial de José María Izquierdo en una artículo del diario “El país semanal”, denominado: En un siglo habrá muchas menos enfermedades raras.

Allí podrán leer el artículo completo sobre una entrevista realizada a una científica Argentina que vive y trabaja en España en edición de genes y terapia génica.

Su nombre es Marcela del Río y aqui les dejo su foto

Marcela del Río. / GORKA LEJARCEGI

La entrevista completa incluye varios tópicos y pueden leerla en forma completa aquí

Espero les guste

Saludos

Gel Electrophoresis Animación para práctica de laboratorio

La página del “Genetic Science Learning Center” de la Univerisdad de Utah, hace tiempo que posee una serie de herramientas educativas muy interesantes para nuestros alumnos.

Se animan a separar fragmentos de ADN de distitnos tamaños? Esto se hace usando la separación en geles de agarosa mediante el uso de una fuente de poder eléctrica. Por eso se denomina electroforesis.

Se animan a tomar las muestras y poneras en el gel? con este tipo de animación pueden hacerlo.

El único problema es que está en inglés, pero como práctica y para repasar los conceptos me parece muy lindo

Les dejo el link abajo

A disfrutarlo!!!

Gel Electrophoresis.

Animación de la escala del Universo

Hace ya unos 2 años que existe y siempre me olvido de ponerla en el Blog porque creo que es una animación maravillosa, realizada por Carl y Michael Huang. Si entran en la página van a ver que tarde un poco en cargar pero luego que carga, van a poder moviendo la barra inferior con el mouse para acercarse desde lo más pequeño ( a la menos 35) hasta lo más grande (10 a la 27) , es decir tanto lo que sabemos en teoría, como lo que posible ver con un microscopio electrónico o uno ´ptico o con nuestro ojo humano o con telescopio y mucho más allá.

Bacterias, virus, ADN, células, edificios, animales y la tierra, los planteas y galaxias conocidas, todo es posible visualizarlo.

Les quiero dejar algunas capturas de pantalla para que se den una idea de lo que les cuento, pero les sugiero que entren a la animación para verla por completo. Es maravillosa. Pueden entrar aquí

Todas las imágenes tiene copyright 2012 de Carl y Michael Huang de http://htwins.net/

El pase de diapositivas requiere JavaScript.

Centrómeros. ¡Pensar que se creía ADN repetitivo sin funcion!

p672116-abnormal_mitosis-spl Photo Scince library

p672116-abnormal_mitosis-spl Photo Scince library

Desde hace ya unos cuentos años se sabía que los centrómeros estaba formados por secuencias de ADN altamente repetitivo pero se creía que no cumpliía ninguna función particular, sin embargo según Rosic et al, 2014 parece ser que las secuencias de ADN repetitivas ADN  del centrómero, codifican o se transcriben a un ARN no codificante que promueve el montaje del cinetocoro y la segregación cromosómica durante la mitosis.

Centrómeros-las regiones de cromosomas donde las proteínas del cinetocoro se ensamblan y fijan los cromosomas al huso mitótico-se definen por factores epigenéticos como la variante de la histona CENP-A en vez de por su secuencia de ADN específica. La cromatina centromérica se caracteriza a menudo, sin embargo, por la presencia de secuencias repetitivas de ADN llamados repeticiones por satélite, y algunas evidencias sugieren que los ARN transcritos de estas regiones podrían ayudar a las células  a identificar la ubicación de sus centrómeros.

Rošić et al. encontraron que en el cromosoma X de la Drosophila,  localizada en la mayoría de los centrómeros de cromosomas mitóticos,  región de ADN altamente repetitiva, se transcribe a  un ARN no codificante. Si se agotan estas transcripciones de la región repetitiva SAT III, se provoca un defecto en la segregación de todos estos cromosomas, no sólo el cromosoma X. Los investigadores con frecuencia observaron que los cromosomas no lograron pasar a los polos del huso durante la anafase.  Estos cromosomas rezagados mostraron niveles reducidos de proteínas centrómero y cinetocoro incluyendo CENP-A, CENP-C, y Spc105, lo que indica que no pueden adherirse al huso mitótico correctamente.

Los ARN transcriptos de SAT III interactuaron con CENP-C, lo que sugiere que el ARN ayuda a reclutar o estabilizar esta proteína en los centrómeros, promoviendo así la CENP-un conjunto de proteínas que se incorporan al cinetocoro. El autor principal, Sylvia Erhardt piensa que los ARN no codificantes transcritos de otras repeticiones satélite pueden actuar de manera similar como marcadores epigenéticos de centrómeros.

Habrá ahora que esperar a nuevas investigación de otros ARN de secuencias repetitivas de ADN en otras regiones y su posible función. Además es otra causa posible de no disyunción en casos de que alguno de estos elemento no funciones verdad?

Fuente: Research Article – Article: Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. Silvana Rošić, Florian Köhler, and Sylvia Erhardt. J Cell Biol  jcb.201404097. Published: November 3, 2014, doi:10.1083/jcb.201404097

Más información  aqui

Bioarray: Diagnóstico Genético

Bioarray es un laboratorio de diagnóstico e investigación especializado en el análisis genético y dirigido al sector médico, de investigación y biotecnológico

¿De que hablamos ahora?

Todo muy interesante

Mered HaKadosh

Las múltiples caras del sionismo

Blog de Gesvin

"Si enseñamos a los alumnos de hoy como enseñábamos ayer les estamos robando el futuro" - J. Dewey

red synbioMX

Red Nacional de Biología Sintética de México

BIO/GEOLOGÍAPG

Blog de las materias de Biología y Geología de María Pilar García profesora del IES Parque Goya

Biblioteca Interactiva SUH

Este espacio pretende sistematizar las herramientas construidas en la campaña: "SUHmate la prevención está en tus manos"

Biomedicina

Este blog será un sitio para hablar y compartir novedades acerca del mundo de la biomedicina

PROVERBIA

"Crítica Social, Lírica y Narrativa"

Compartir intereses

Infografías

A %d blogueros les gusta esto: