Gracias Wikipedia

Siempre he dicho que el proyecto colaborativo de Wikipedia es maravilloso y sigue creciendo y creciendo. La idea de que todos pudieran contribuir a generar una enciclopedia online siempre me sorprendió por lo gigantesco del proyecto. Durante muchos años he escuchado a compañeros científicos desprestigiar a este proyecto. Sin embargo siempre digo que hay que aclararle a la gente lo complejo que es editar en wikipedia y no es que cualquiera puede hacerlo. La llegada de la versión en español fue más compleja y se retrasa un poco en las ciencias a la versión en inglés, pero sigue creciendo. Los que escriben deben tener una vasta  experiencia en escribir correctamente y saber citar bibliografía para que sea validado por los editores. Yo le he intentado alguna vez y se me hizo algo complejo así que lo descarté porque no tenía el tiempo suficiente para hacerlo bien.

Así que mi reconocimiento a todos los que aportan día a día a este proyecto.

Hoy en particular además quiero agradecer a los que han citado a este Blog en la descripción del ARN mensajero en particular a mi página de síntesis de proteínas. Esa página fue escrita en base a una guía de lectura que realicé hace unos cuantos años para mis alumnos de genética básica de la carrera de veterinaria de la Univ. de Buenos Aires La Guía se llamaba Traducción de proteínas y fué publicada por BM press (Guía de lectura de Genética Básica. BMPress Editores. 2006. I.S.B.N.: 987-97692-8-7) dentro de una guía de lectura con varios capítulos, en algunos de los cuales soy autora. Así que gracias por haberme considerado lo suficientemente confiable.

Saludos

Gracias Univ. de Málaga

Captura de pantalla de

A veces me sigo sorprendiendo de estas cosas, pero así como muchos sitios enlazan sus plataformas virtuales a este Blog, mayormente de escuelas de nivel medio, también lo hacen ciertas universidades. En esta oportunidad es para mi un privilegio que esté mi Blog citado en la biblioteca de la Universidad de Málaga. Así que sólo decirles gracias por tener el Blog en cuenta y por supuesto por difundirlo. Da mucha gratificación a mi tarea constante. En particular mi agradecimiento a las personas a cargo de esta tarea gigantesca de elaborar una biblioteca.

Contacto: bblcie@uma.es.

Bibliotecarios de información y referencia de esta disciplina:

Pilar Márquez Reinoso

María Josefa Sáez Martín

GRACIAS

Genotipos y susceptibilidad al scrapie (tembladera) en ovejas. Ejercitación resuelta

El scrapie es una enfermedad neurodegenerativa, causada por un prión que afecta a ovejas y ocasionalmente a cabras. En los ovinos, el genotipo del animal influye completamente en la incidencia de la enfermedad. Las ovejas genéticamente susceptibles resultan infectadas pero no desarrollan la enfermedad durante varios años. Los priones son proteínas infecciosas que aparentemente se reproducen al convertir una proteína celular normal en copias del prión. La proteína celular, llamada PrPc, se encuentra en la superficie de las neuronas.

En los ovinos, la transmisión y el desarrollo de la enfermedad clínica dependen del genotipo del hospedador. La susceptibilidad o la resistencia a la forma clásica de scrapie están relacionadas con los polimorfismos en el gen PrP en los codones 136, 154 y 171. Estos tres codones se encuentran en una parte de la proteína que puede sufrir cambios estructurales durante la conversión de PrPc a PrPSc, la forma aberrante e infectiva. En el codón 136, la alanina (A) está vinculada con la resistencia al scrapie y la valina (V) está asociada con la susceptibilidad. En el codón 154, la histidina (H) está vinculada con la resistencia y la arginina (R) está asociada con la susceptibilidad. En el codón 171, la arginina (R) está vinculada con la resistencia, mientras que la glutamina (Q) y histidina (H) están asociadas con la susceptibilidad. Aunque otras combinaciones son posibles desde un punto de vista teórico, sólo cinco alelos PrP son frecuentes en ovejas: A136R154R171 (abreviado ARR), ARQ, AHQ, ARH y VRQ.

En base al texto anterior, conteste las siguientes preguntas

  1. Diseñe una técnica que permite identificar los alelos presentes en su rebaño.
  2. Qué genotipos de ovejas seleccionaría en su rebaño para tener una mayor seguridad de que son resistentes o tienen baja susceptibilidad de desarrollar scrapie? Cuáles serían los fenotipos intermedios y los más susceptibles a scrapie.
  3. Si sospecha que en su establecimiento hay portadores de los alelos susceptibles, cómo procedería para identificarlos? ¿Qué decisión tomaría respecto de los mismos?

Fuente:

  • The Center for Food Security and Public Health. Iowa State University (2007). Scrapie. Enfermedad del temblequeo o mordisqueo.

ACTIVIDAD RESUELTA

 1. Diseñe una técnica que permite identificar los alelos presentes en su rebaño.

Para la identificación de alelos, nos podemos valer de la técnica denominada RFLP (del inglés Restriction Fragment Length Polymorphism) o polimorfismos en la longitud de los fragmentos de restricción. El primer paso consiste en diseñar primers que apareen a regiones conservadas del gen que codifica para la proteína PrP, y luego analizar la secuencia, para determinar que enzimas de restricción me permitirían discriminar por medio de distintos puntos de corte en las variantes alélicas de los codones 136, 154 y 171 que puedan visualizarse en un gel de agarosa.

2. ¿Qué genotipos de ovejas seleccionaría en su rebaño para tener una mayor seguridad de que son resistentes o tienen baja susceptibilidad de desarrollar scrapie? ¿Cuáles serían los fenotipos intermedios y los más susceptibles a scrapie.

La susceptibilidad o la resistencia a la forma clásica de scrapie están relacionadas con los polimorfismos en el gen PrP en los codones 136, 154 y 171. En el codón 136, la alanina (A) está vinculada con la resistencia al scrapie y la valina (V) está asociada con la susceptibilidad. En el codón 154, la histidina (H) está vinculada con la resistencia y la arginina (R) está asociada con la susceptibilidad. En el codón 171, la arginina (R) está vinculada con la resistencia, mientras que la glutamina (Q) y histidina (H) están asociadas con la susceptibilidad.

Para facilitar el análisis del nivel de susceptibilidad o resistencia del alelo es más simple organizar una tabla con los diferentes cambios en los codones 136, 154 y 171  que da lugar a la sustitución con distintos aminoácidos:

Tabla codones scrapie

A simple vista, el alelo que tenga en los codones 136, 154 y 171 los aminoácidos A, H y R, respectivamente, sería el que  conferiría un mayor nivel de resistencia. Mientras que por el contrario, el más susceptible sería el que tenga en esas mismas posiciones, los aminoácidos V, R y Q/H.

Si bien lo anterior es un modelo teórico, en el cual todas las combinaciones serían posibles, sólo cinco alelos PrP son frecuentes en ovejas: A136R154R171 (abreviado ARR), ARQ, AHQ, ARH y VRQ.

Por lo que en mi rebaño seleccionaría las ovejas que posean los alelos: ARR, AHQ y/o ARH, los cuales combinan para dos de las tres posiciones en los codones, 2 aminoácidos que otorgan mayor resistencia.

En cambio, un fenotipo intermedio sería el que posea el alelo  ARQ, y el más susceptible al scrapie, el alelo VRQ ó VRH.

3. ¿Si sospecha que en su establecimiento hay portadores de los alelos susceptibles, cómo procedería para identificarlos? ¿Qué decisión tomaría respecto de los mismos?

La identificación se puede realizar mediante la toma de muestra para hacer una extracción de ADN, y genotipificar mediante RFLP (tal como se explicó en el punto 1).

Aquellos animales con susceptibilidad aumentada, deben mantenerse apartados del resto del rebaño, y realizarles un seguimiento para evaluar sintomatologías típicas de scrapie. Evitar usar hembras de reemplazo con este genotipo para evitar la prolifereación en el rebaño de alelos susceptibles. Asimismo, el macho a usar debería tener al menos uno de los genotipos de mayor resistencia.

El riesgo de ingreso de scrapie puede reducirse si se mantiene un rebaño cerrado o si se limita al mínimo la compra de animales fuera del territorio. Si deben incorporarse animales de reemplazo, éstos deben proceder exclusivamente de rebaños que dieron negativo para esta enfermedad. El empleo de genotipos resistentes al scrapie también disminuye el riesgo de contagio de la forma clásica de scrapie, aunque pueden ocurrir formas atípicas en estos animales, incluso en aquellos con genotipos ARR/ARR sumamente resistentes.

Detectives moleculares de alimentos. Ejercitación resuelta

Introducción: Las aplicaciones de la técnica de PCR en el control de alimentos son numerosas. Se pueden utilizar para identificar especies cárnicas y especies de pescado de interés alimenticio, detectar la presencia de agentes patógenos en los alimentos (Salmonella spp., Listeria monocytogenes, Escherichia coli O157:H7) o detectar la presencia o ausencia de organismos genéticamente modificados (OGMs) en los alimentos.

En la siguiente figura se muestra el resultado obtenido al amplificar por PCR un gen universal presente en todas las especies animales. En este ensayo, cada especie genera una banda de amplificación de un tamaño determinado.

En la Figura 1 puede observar que las calles control (1 a 6) correspondientes a cabra, pollo, vaca, oveja, cerdo y caballo pueden compararse con las muestras problema (calles 7 a 12). Las calles 7 a 12 corresponden a distintos alimentos, en los cuales se quiere determinar qué tipo de carne poseen.

gel agarosa

Teniendo en cuenta el tamaño relativo de los genes amplificados en las muestras control, ¿podría decir qué producto animal poseen los alimentos A (calles 7 y 8), B (calles 9 y 10) y C (calles 11 y 12)?

ACTIVIDAD RESUELTA

Respuestas:  Al comparar los tamaños alélicos, se puede concluir que:

  • La muestra A (calles 7 y 8) contiene pollo,
  • La muestra B (calles 9 y 10) contiene en su composición carne de pollo, vaca y cerdo.
  • La muestra C (calles 11 y 12), al igual que la muestra A, contiene sólo carne de pollo.

Análisis de marcadores moleculares microsatélites. Ejercitación resuelta

Se propone observar el esquema de la Figura 1 y responder las preguntas.

  1. ¿Qué característica tiene el marcador molecular, que hace que sea considerado un VNTR?
  2. ¿Qué técnica permite amplificar la región VNTR?
  3. ¿Qué significan los segmentos lineares rojos y las flechas contiguas a la región VNTR?
  4. ¿Qué técnica permite discriminar o diferenciar los fragmentos amplificados que poseen distinto tamaño? ¿A qué se deben las diferencias en los tamaños de dichos fragmentos de ADN?
  5. En el esquema del gel, ¿cuántas muestras de ADN de diferentes individuos se han incluido en el análisis?
  6. ¿cuántos alelos hay en este conjunto de 5 individuos? ¿Cuál es el de mayor tamaño? ¿Y el de menor?
  7. ¿Cuál es el número máximo de alelos que puede tener un individuo diploide? Describir qué individuos son homocigotas o heterocigotas y qué alelos poseen.
esquema VNTR
Esquema de un VNTR o microsatélite. Fuente: Porque biotecnología

ACTIVIDAD RESUELTA

  1. Las lineas rojas adyacentes a la región del microsatélite, representa a la cadena de ADN que lo rodea. Esta secuencia de ADN debe conocerse para poder diseñar los primers (segmentos de ADN de simple cadena, señalados con flechas rojas en el esquema) complementarios a dicha secuencia. Los primers a derecha e izquierda del microsatélite determinarán los extremos de la región del ADN del que se obtendrán millones de copias luego de realizar la PCR.



  2. La diferencia en tamaño de los fragmentos de ADN está dada por el diferente número de repeticiones de las secuencias en tandem. A cada fragmento de diferente tamaño se lo llama alelo. Por ejemplo, en el esquema se muestra un alelo de 10 repeticiones. Se debe tener en cuenta que en individuos dipolides (2n), en cada locus, se encuentran 2 regiones microsatélites (una en cada cromosoma homólogo). Si el individuo posee dos microsatélites del mismo tamaño, se lo considera homocigota para ese locus, si en cambio las regiones microsatélites en los dos cromosomas homólogos son diferentes, el individuo es heterocigoto para ese locus. Una manera de separar los fragmentos (alelos) de diferente tamaño, es por medio de electroforesis en geles (de agarosa o acrilamida). El ADN, que tiene carga neta negativa, migrará hacia el polo positivo del campo eléctrico creado a través del gel. Debido a la porosidad de dichos geles, las moléculas más grandes (alelos con mayor número de repeticiones) quedarán retrazadas en el gel y correrán menos (más cerca del polo negativo), mientras que las más pequeñas se desplazarán más.


  3. Se incluyeron ADNs de 5 individuos, en los cuales se realizó previamente la PCR, para amplificar la región microsatélite.

  4. Hay 3 alelos de diferentes tamaños (indicados como alelos A, B y C). El alelo de mayor tamaño es el A (corre menos en el gel), mientras que el de menor tamaño es el C.

  5. Un individuo diploide posee 2 alelos. Si los dos alelos son del mismo tamaño (se ven como una única banda en el gel) se dice que es homocigota, mientras que si los dos alelos son diferentes, es heterocigota para ese locus.

  6. Individuo 1: homocigota, posee 2 alelos iguales (B); indiv. 2: heterocigota con los alelos B y C; indiv. 3: homocigota, con el alelo A; indiv. 4: homocigota para el alelo C; indiv. 5: heterocigota, con los alelos A y B.

  7. Un individuo diploide posee 2 alelos. Si los dos alelos son del mismo tamaño (se ven como una única banda en el gel) se dice que es homocigota, mientras que si los dos alelos son diferentes, es heterocigota para ese locus. Individuo 1: homocigota, posee 2 alelos iguales (B); Individuo 2: heterocigota con los alelos B y C; Individuo 3: homocigota, con el alelo A; Individuo 4: homocigota para el alelo C; Individuo 5: heterocigota, con los alelos A y B.