Genes de terneza. Ejercitacion resuelta

Introducción: La calidad de la carne constituye un importante factor de interés económico y es la terneza, el atributo más apreciado por los consumidores de todo el mundo. Sin embargo, es una característica de compleja medición en el momento de la faena.

Hoy la Argentina está a la vanguardia, junto con Australia y Estados Unidos, en los análisis que determinan la capacidad genética de los rodeos para producir carne tierna.

Trabajos científicos de los últimos años han demostrado que el “tiernizado” “post mortem” de las carnes se debe a la existencia de dos enzimas, Calpaína y Calpastatina que actuando en forma coordinada degradan las fibras musculares quitándoles el “rigor mortis” luego de la faena. La Calpaína es la enzima principal de estos procesos de maduración y las variantes más activas de la enzima confieren mayor terneza a la carne. La Calpastatina codifica para una fosforilaza, enzima inhibidora de la calpaína, según el estado alélico en que se encuentre. En forma inversa a la anterior, en este caso las variantes menos activas de esta enzima confieren mayor terneza.

Para cada marcador se ha encontrado una variante más favorable a la terneza (+) y una menos favorable (-). Al tener los bovinos dos alelos de cada gen, uno proveniente del padre y otro de la madre, para un animal hay entonces tres genotipos posibles para cada marcador.

En la actualidad el componente genético de la terneza se explica con la presencia de 4 mutaciones, 2 en el gen de Calpastatina (Calpastatina 2959 y Calpastatina UoG) y 2 en el gen de Calpaína (Calpaína 316 y Calpaína 4751). Por ejemplo, para el gen de la calpaína, la mutación en la posición 316 corresponde al cambio de una base en el ADN (citosina por guanina), que produce un cambio en la estructura de la proteína al reemplazar el aminoácido alanina (GCC) por glicina (GGC).

Dado que estos genes se heredan en forma mendeliana, es importante incluir en la ficha de cada animal tanto machos como hembras su genotipo para Calpaína y Calpastatina y su Índice de Terneza combinado. La información de los genes de terneza (genotipo) se incorpora en Resumen de Padres ANGUS (Catálogos).

Es importante remarcar, que estos marcadores son mas relevantes en la comercialización de carne fresca, es decir aquella que se comercializa cerca de la faena. En nuestro país, 80 %  de la faena tiene como destino el Mercado Interno, dentro de esta modalidad.

Analizando lo anteriormente expuesto, contestar:

  1. ¿Cuáles son las características que se desean mejorar en el ganado vacuno destinado a consumo?
  2. ¿Por qué es posible mejorar esta característica en el ganado?
  3. ¿Cuál es el método tradicional para medir terneza? ¿qué aportan los marcadores moleculares en ésta área?
  4. ¿Cuáles son los marcadores moleculares ligados a la cualidad de terneza de la carne? ¿Qué rol juegan estas enzimas en el proceso de tiernización de la carne?
  5. ¿Qué beneficio trae el conocimiento de estos genes al mejoramiento de esta raza vacuna?
  6. ¿Cuál es el número de alelos favorables [+] considerando que son 4 los marcadores moleculares disponibles para los genes de terneza?
  7. Dado que la capacidad de predecir terneza de los cuatro marcadores es aditiva, a mayor cantidad de las variantes más favorables, mayor probabilidad de obtener individuos con carne tierna. Indique una metodología que pueda emplearse en la detección del número de alelos favorables para la selección de reproductores por terneza.

Bibliografía: Adaptado de:

Guitou, Horacio (2010). Marcadores Moleculares de Terneza: CALPAÍNA Y CALPASTATINA. Una nueva herramienta para el mejoramiento genético de los rodeos bovinos de carne. Revista AnGus 249. Pág. 73-77.

ACTIVIDAD RESUELTA

¿Cuáles son las características que se desean mejorar en el ganado vacuno destinado a consumo?

Para poder contestar esta pregunta, se sugiere buscar información bibliográfica. Ejemplo, del Instituto de Promoción de la Carne Vacuna Argentina (IPCVA).

Los productores desean seleccionar a los mejores animales para lograr una mayor área de ojo de bife, menor cantidad de grasa dorsal o menor porcentaje de grasa intramuscular. A estas características de interés para los consumidores, se sumó la terneza de la carne. La terneza de la carne se define, como la dificultad o la facilidad con la que una carne se puede cortar o masticar.

¿Por qué es posible mejorar esta característica en el ganado?

El mejoramiento es posible porque esta característica se encuentra gobernada por ciertos genes, con lo cual la terneza es un carácter heredable, sensible al mejoramiento.

Además, estos genes se heredan en forma mendeliana, y la descripción del genotipo para estos genes de terneza ya se está incluyendo en el Resumen de Padres ANGUS (Catálogos).

¿Cuál es el método tradicional para medir terneza? ¿qué aportan los marcadores moleculares en ésta área?

El método de “Warner-Bratzler” es el tradicional para medir la terneza de la carne y consiste en cortar la carne con una guillotina al momento de la faena y medir la fuerza de corte en kilogramos. Debido a que este método es poco práctico en estudios genéticos en donde se deben medir los caracteres en los progenitores y la progenie, la utilización de los marcadores moleculares permite ganar en tiempo y en costo y evita la faena de ejemplares.

¿Cuáles son los marcadores moleculares ligados a la cualidad de terneza de la carne? ¿Qué rol juegan estas enzimas en el proceso de tiernización de la carne?

Los marcadores moleculares son las distintas variantes alélicas de los genes que codifican para las enzimas Calpaína y Calpastatina. Las diferencias en los alelos se deben a mutaciones puntuales (SNPs o Single Nucleotide Polymorfhism).

Trabajos científicos de los últimos años han demostrado que el “tiernizado” “post mortem” de las carnes se debe a la existencia de dos enzimas, Calpaína y Calpastatina que actuando en forma coordinada degradan las fibras musculares quitándoles el “rigor mortis” luego de la faena. La Calpaína es la enzima principal de estos procesos de maduración y las variantes más activas de la enzima confieren mayor terneza a la carne. La Calpastatina codifica para una fosforilaza, enzima inhibidora de la calpaína, según el estado alélico en que se encuentre. En forma inversa a la anterior, en este caso las variantes menos activas de esta enzima confieren mayor terneza.

¿Qué beneficio trae el conocimiento de estos genes al mejoramiento las raza vacunas?

La identificación en las diferentes razas bovinas de mutaciones puntuales (SNPs o Single Nucleotide Polymorfhism) asociadas a variantes genéticas de mayor o menor terneza en los genes de CALPAÍNA y CALPASTATINA, ha sido el puntapié inicial para el mejoramiento genético de los rodeos en lo que respecta a la terneza de su carne. Los animales que poseen las variantes más favorables de cada gen tienen más probabilidades de generar carne tierna que los que poseen las variantes menos favorables.

¿Cuál es el número de alelos favorables [+] considerando que son 4 los marcadores moleculares disponibles para los genes de terneza?

El componente genético de la terneza se explica con la presencia de 4 mutaciones, 2 en el gen de Calpastatina (Calpastatina 2959 y Calpastatina UoG) y 2 en el gen de Calpaína (Calpaína 316 y Calpaína 4751).

Un individuo como máximo puede presentar las 8 variantes favorables (individuo diploide).

Entre los individuos con los genotipos más y menos favorables (8 genes favorables vs 0 genes favorables), existe una diferencia en la terneza de más de 1,4 Kg (30%) medida con el método de Resistencia al Corte de Warner – Bratzler a los 14 días post faena. Las VARIANTES MÁS FAVORABLES de un gen o marcador se designan [+] y las MENOS FAVORABLES [-], los bovinos poseen una copia de cada gen provenientes del padre y otra de la madre, el genotipo óptimo de cada gen o marcador es [++], el genotipo intermedio es [+ -] y el genotipo menos favorable es [- -]. Un GENOTIPO [++] significa que el animal que lo posee es homocigota para la variante de mayor terneza para los dos genes y por lo tanto es un individuo con un 100% de capacidad para transmitir dichas características genéticas a su descendencia.

Dado que la capacidad de predecir terneza de los cuatro marcadores es aditiva, a mayor cantidad de las variantes más favorables, mayor probabilidad de obtener individuos con carne tierna. Indique una metodología que pueda emplearse en la detección del número de alelos favorables para la selección de reproductores por terneza.

Para la detección e identificación de las variantes alélicas de los genes que codifican para calpaína y calpastatina, respectivamente, se puede diseñar una metodología que abarque la amplificación por PCR de ambos genes, y una digestión con enzimas de restricción que permita discriminar que variante alélica está presente, siempre y cuando las mutaciones coincidan con sitios de reconocimiento de enzimas de restricción conocidas, creando un sitio nuevo, y/o eliminando otro existente. Por ejemplo, para el gen de la calpaína, la mutación en la posición 316 corresponde al cambio de una base en el ADN (citosina por guanina), que produce un cambio en la estructura de la proteína al reemplazar el aminoácido alanina (GCC) por glicina (GGC).  Alternativamente, se puede mandar a secuenciar el fragmento amplificado.

Anuncios

Monografías de alumnos. Estudio de algunas frecuencias génicas en gatos de distintos fenotipos en Choele Choel

Autores:  Arrieta, Macarena; Cruz, Micaela; Moyano, Camila; Ríos, Gimena; Torres, Emilio.
Cátedra de Genética de poblaciones y Mejoramiento Animal, Carrera Veterinaria, Universidad Nacional de Río Negro. Prof. Mag. Med. Vet. Gabriela M. Iglesias y J.T.P: Dra. María Pía Beker

Resumen:

El objetivo de este trabajo fue determinar la variabilidad genética de las poblaciones de gatos domésticos (Felis catus) utilizando genes que codifican la coloración, el diseño y longitud del pelaje en Choele Choel, provincia de Rio Negro, Argentina. Un total de 311 gatos fueron fenotipados mediante observaciones directas realizadas en recorridos por los distintos barrios de la localidad, atendiendo a los marcadores fenotípicos de color de pelaje: gen Naranja (Orange) (O), Agouti (A) o rayado, Negro (Black) (D), color diluído (Dilution) (d), pelo largo (Long Hair) (L), Manchas blancas (Spotting white) (S), Blanco Dominante (Dominant White) ( W ) y Manx (cola corta o nula “M”). Se calculó la frecuencia alélica de cada gen en el total de animales registrados y se comparó con las frecuencias del equilibrio  Hardy-Weinberg. Se encontró que el marcador Non-agouti (no rayado) y pelo corto, fueron los de mayor frecuencia, mientras los marcadores Blanco Dominante, Naranja, Pelo Largo presentaron los valores más bajos en la población.

Introducción:

En el presente trabajo se realizó un relevamiento de gatos de la localidad de Choele Choel, provincia de Rio Negro, Argentina. Se obtuvo un total de 311 gatos, a partir de los cuales se estimaron las frecuencias alélicas de genes que determinan el color del pelaje y otros marcadores fenotípicos.

Los marcadores fenotípicos, especialmente los relacionados con la coloración del pelaje, constituyen una valiosa herramienta a la hora de analizar la estructura genética de las poblaciones, debido a su gran contenido informativo, bajo costo, fácil manipulación e identificación y rápida obtención de resultados

Las características de los genes en que se basó el trabajo fueron:

  • Agouti: (A) es un gen dominante y autosómico que determina la presencia de un patrón de rayas. Por lo tanto, un gato necesita una sola copia del alelo “A” para tener la capa atigrada. En el caso de individuos con genotipo “aa” (homocigotas recesivos) ó no agutí, el pelaje de estos será de un color sólido.
  • Naranja: (O) el color naranja del pelaje está determinado por el gen O el cual está ligado al sexo y se encuentra en la región diferencial del cromosoma

Los machos poseen dos fenotipos posibles, ya que portan un solo alelo en su cromosoma X; en cambio las hembras tienen tres fenotipos posibles ya que ambos cromosomas X portan cada uno un alelo diferente o no. Las homocigotas dominantes (XOXO) expresan color anaranjado, las homocigotas recesivas (XoXo) expresan el color de base (negro o azul) y las heterocigotas expresan el fenotipo carey o calicó. Este fenotipo se produce por la inactivación de un cromosoma X al azar, formando zonas de color naranja y zonas del color de base. Las zonas de color naranja se producen por la inactivación del X portador del alelo recesivo (Xo), por lo tanto el alelo dominante (XO) inhibe el color de base. Las zonas del color de base se producen por el fenómeno inverso, el color de base puede expresarse gracias a la inactivación del X portador del alelo epistático. (Marrube et. al, 2013)

  • Negro: (B) el color negro depende de la interacción entre tres genes y es autosómico. El gen “B” determina la pigmentación negra, el gen “C” es la plena expresión del color y el “D” es de la coloración densa. Variantes de los genes B y D dan lugar a otros 3 colores, el b1 convierte el negro en un color pardo-chocolate mientras que una segunda mutación da origen al aleo b2 que da una capa más pálida de color canela.
  • Una mutación del gen D (negro) dará el gen dilución (d) diluyendo el color negro a gris.
  • El color negro del pelaje es un ejemplo de serie alélica, que es un conjunto de  alelos, para un gen determinado, cada alelo de este serie da lugar a un fenotipo diferente, lo que permite definirlo y separarlo de los otros.
  • Blanco: ( W)  la coloración blanca de todo el manto se debe a la presencia del alelo dominante del gen W, el cual es epistático y autosómico. Su presencia enmascara la expresión de todos los otros genes de color.
  • Manchado de blanco: (S) las manchas blancas son determinadas por el gen S, que es autosómico dominante. Es un gen con expresividad variable y dominancia incompleta. A modo de simplificación: si el individuo es homocigota recesivo (ss) no tendrá manchas blancas, mientras que los individuos heterocigotos (Ss) tendrán manchas en menos del 50% del cuerpo, y los individuos homocigotas dominantes (SS) presentarán más del 50% del cuerpo con manchas. (Christensen, 2000).
  • Longitud del pelo: (L)el pelo corto en los gatos está determinado por un gen dominante (L) por lo que aquellos individuos con genotipo homocigoto dominante (LL), o heterocigoto (Ll) tendrán pelo corto, y solo los homocigotas recesivos (ll) tendrán el pelo largo.  
  • Manx: (M) La ausencia de cola, o una cola extremadamente corta está determinada por el gen M que es autosómico y dominante. Los individuos homocigotos recesivos (mm) tendrán el largo de cola normal, en tanto que la expresión de ambos alelos dominantes (MM) resulta en un gen letal.

Los autores de las características morfológicas especificas de estos gatos Manx fueron descriptos por Howell y Sieger. Los autores distinguen un seguimiento de cuatro tipos:

  • Rumpy o manx verdadero : se ven afectadas las vertebras caudales.
  • Rumpy-riser: algunos gatos tienen vertebras caudales inmóviles
  • Stumpy: Los gatos tienen un gran numero significante de vertebras caudales (3) que el tipo previo pero anormalmente cola conformada.
  • Longie: la cola es corta con una normal apariencia.

Se ha notado que la anormalidad es causada por un factor dominante semiletal con un efecto letal recesivo en una etapa embriológica temprana.  Como el factor letal tiene una expresividad variable, el desarrollo de otras partes del cuerpo pueden ser también ser impares (faltas de vertebras lumbares, acortamiento de vertebras). Se supone que estos cambios son controlados por modificaciones genéticas. (Zhigachev-Vladimirova, et-al, 2002).

Tabla No 1: Genes utilizados en el relevamiento y sus símbolos

LocusAlelosCaracterísticas
O (gen ligado al sexo)OPigmentación naranja
oPigmentación no naranja
A(gen autonómico)AAgutí
aNo agutí
D (gen autosómico)DColor negro denso
dColor diluido (Gris)
L (gen autosómico)LPelo corto
lPelo largo
W (gen autosómico)WColor blanco
wExpresión de otros colores

Referencias: Ruiz Garcia y col.1994, Wright y Walters.1982, Pardo P. E. y col., 2014.

Materiales y métodos

La localidad de Choele Choel se encuentra en la provincia de Rio Negro (39°17′09″S 65°39′15″O). Para la recolección de datos Se utilizaron Google Maps, cámaras fotográficas y anotaciones. Se tuvieron en cuenta, además del pelaje, datos como raza, sexo, nombre, domicilios y edad, siempre que fuese posible.

Mapa Choele Choel y sus zonas
Mapa Choele Choel y sus zonas

Figura N° 1: Mapa de Choele Choel y zonas estudiadas

Tabla No.2

Zona% de la población felina
Zona 1 (Barrio Las Bardas)8,6%
Zona 2  (Barrio Maldonado )17,68%
Zona 3 (Centro )10,28%
Zona 4 (Calle Roca – 25 de Mayo)27,65%
Zona 5 (Calle Rojas- La Anónima)36,3%

Tabla No. 2: Zonas y barrios de la localidad utilizados en el relevamiento

Tabla No.3

FenotiposNúmero de animales
Agutí (A_)194 2
No agutí (aa)117 3
Naranja: (O_)89
Manchado de blanco: (S)166
Blanco dominante (W_ )10
Negro (D_X°X°)94
Dilución (gris) (dd)71
Manx (M) = 11
Pelo corto (L_)256
Pelo largo (ll)55

Tabla No. 3: Animales hallados en el relevamiento. Censo total en ciudad de Choele Choel= 311 gatos.

Datos recolectados: 1

1 Todo gato que contara con la presencia de más de un gen (por ejemplo tricolores que tienen gen naranja, gen negro, dilución y manchado blanco) fueron incluidos en el conteo de cada gen.

2En el conteo de individuos se incluyó a todo aquel que tuviera presencia del gen agutí, aunque además presentara otros genes (Naranja, Manchado de blanco, Gris, etc.)

3 Al igual que con el gen agutí, se toma en cuenta aquellos individuos que presentan otros genes.

Datos para cálculos de frecuencias

En este estudio se identificaron y cuantificaron aquellos individuos con el genotipo homocigoto recesivo, debido a que son los únicos posibles de distinguir fenotípicamente. Es así que se estimaron las frecuencias alélicas teniendo en cuenta la nomenclatura clásica dónde al alelo recesivo se lo denomina “q” y al alelo dominante “p”

Gen agutí: Debido a que son indistinguibles, fenotípicamente hablando, aquellos individuos con genotipo heterocigoto (Aa) del homocigoto dominante (AA) ya que ambos tienen el fenotipo atigrado (Agutí), sólo podemos identificar y asignarle el genotipo a aquellos individuos con fenotipo no agutí, (homocigotas recesivos “aa”)

Frecuencia Genotípica “aa”= =117/311= 0,38

A partir de la frecuencia genotípica, se calculó la frecuencia génica de “a” empleando la siguiente fórmula:

q = Frec. (a) = √ Q ² = 0,61

Como la suma de las frecuencias alélicas es igual a la unidad (p + q = 1), podemos calcular por diferencia la frecuencia génica de A:

p = Frec (A) = 1 – Frec. (a)= 1 – 0.61= 0,39

Además, el cálculo de las frecuencias alélicas se puede usar para comparar si la población de Choele Choel se encuentra en equilibrio Hardly-Weimberg, para lo cual su utiliza la siguiente fórmula:

p2 + 2pq + q2 = 1

Donde:

  • p2 es igual a P2: frecuencia genotípica de homocigotas dominantes en el equilibrio
  • 2pq: es la frecuencia de los heterocigotos en el equilibrio
  • q2: es la frecuencia de los homocigotas recesivos en el equilibrio

Reemplazando los valores obtenidos: p (0,39) y q (0,61) las frecuencias genotípicas en el equilibrio deberían ser:

p22pqq2
0,3922 x 0,39 x 0,610,612
0,150,480,37

En la población muestreada sólo podemos calcular, como ya se explicó, la frecuencia genotípica de las homocigotas recesivas (no agutí), que en nuestro caso dio 0,38.

Luego se realizo el mismo procedimiento para el resto de los alelos.

Tabla No. 4: Frecuencias alélicas estimadas

GenFrecuencia qFrecuencia p
A0,620,38
O0,840,16
S0,680,32
W0,980,02
D0,480,52
L0,410,59
M0,9980,002

 Frecuencias fenotípicas de cada marcador

Una vez de haber realizado el cálculo de frecuencia alélica concluimos que los alelos que predominan en este muestreo aleatorio de Choele Choel serían L, d, w, y O. El alelo pelo corto (L) fue el que mostró mayor frecuencia al igual el gen de la dilución en nuestro muestreo aleatorio. El alelo dominante blanco ( W ) y el gen Manx (M) fueron los que presentaron valores más bajos de frecuencia. También los marcadores pelo largo y naranja mostraron bajas frecuencias a nivel de la población total en el censo.

Conclusión y discusión:

La elevada frecuencia del gen manchado de blanco, podría estar relacionada con factores ambientales como las altas temperaturas, que posiblemente estarían favoreciendo no solo la presencia, sino el aumento de individuos portadores de dicho gen (Ruiz-Garcia y Alvarez. 2005; Kaelin y col.2012; Eizirik y col. 2010). En nuestro caso, la frecuencia del gen manchado de blanco fue menor al 50% que suponemos que podría estar relacionado a las bajas temperaturas de la región.

Se ha propuesto que la carencia del gen W puede ser utilizada como indicador de diversidad genética (Ruiz-García y Álvarez. 1999).

En el presente estudio se encontró un bajo porcentaje del marcador W, resultado similar a lo reportado en estudios realizados en otras poblaciones (Ruiz- García y Álvarez. 1999). Sin embargo, el hecho que la frecuencia del alelo W sea muy baja o no se encuentre en todos los estudios, puede atribuirse a efectos pleiotrópicos sobre la audición (Geigy y col. 2007) lo cual podría causar complicaciones en los individuos así como la muerte a una edad más temprana.

Estudios han reportado que el gen No Aguti se ve favorecido en ambientes urbanos, cuyas densidades poblacionales son altas (Rosenfeld, 2010), pues tienden a “sociabilizar” con otros congéneres para poder co-existir y adaptarse, lo que permite suponer que los gatos que portan este gen, están mejor adaptados a las condiciones imperantes de este sitio, que otros que no lo portan.   Además, otra posible respuesta podría ser el rápido crecimiento poblacional de gatos lo cual incrementa considerablemente el flujo genético e incrementa la panmixia (Peña-Cruz y col. 2015). Si bien, el estudio se realizó en la zona urbana de la localidad, esta condición del gen No Agutí no se observó en la población, siendo solo el 38% de la misma.

Con respecto al gen Manx solo se encontró una gata castrada en la ciudad de Choele Choel por la que no dejará descendencia.  Es producto de una mutación natural y no es un animal de raza adquirido. Concluimos que la gata encontrada en la ciudad entra en la clasificación de Rumpy-riser. 

Bibliografía:

Christensen, A. (2000). Cats as an Aid to Teaching Genetics. Genetics155(3), 999-1004.

Pardo, E., Morales, J., & Cavadia, T. (2014). Estudio de la diversidad genética de la población de gato doméstico (Felis catus) en Montería, Colombia. Bistua Revista de la Facultad de Ciencias Basicas, 12(2), 35-47.

Wright, M. and Walters, S. (1982). El gato. 1st ed. Barcelona: Editorial Blume.

Ruiz-Garcia, M., Alvarez, D., & Shostell, J. (2005). Population genetic analysis of cat populations from Mexico, Colombia, Bolivia, and the Dominican Republic: Identification of different gene pools in Latin America. Journal Of Genetics, 84(2), 147-171.

-Guia de lectura de Genética Básica. MARRUBE, Graciela; MOTTER Mariana, MAIZON Daniel; PINTO Gabriel et-al, 2013. Universidad de Buenos Aires. Argentina. Genética Básica. Guía de Lectura. 2da y 3ra edición. BMPress Editores. 2006. I.S.B.N.: 987-97692-8-7. 

Zhigachev, A. I., & Vladimirova, M. V. (2002). Analysis of the Inheritance of Taillessness in the Baikuzino Population of Cats from Udmurtia. Russian Journal of Genetics38(9), 1051-1053.)

Pagina del Blog Desde Mendel hasta las moléculas. genética del sexo

Libro “CIENCIA y Yo quiero ser científico”

Hola a todos, siempre que tengo la oportunidad de interactuar con otros autores de blogs y científicos lo hago. Desde luego que me apasiona la ciencia y la divulgación de la misma. Por otra parte, me apasiona la docencia y creo que la motivación a los jóvenes por la ciencia es una de mis tareas como profesora de la Universidad. En esta ocasión quería presentarles un libro que puede descargarse en .pdf, para incentivar a los jóvenes en los colegios secundarios y me pareció muy interesante. Posee licencia de Creative commons: que no permite su uso comercial y significa que cualquiera puede utilizarlo, siempre y cuando se aclare quien es el autor de la información.

El coordinador del proyecto es Quintín Garrido, ha contado con la colaboración de APADRINA la CIENCIA y el libro está disponible en su blog y aquí les dejo el enlace al prólogo libro Ciencia, y yo quiero ser científico, les dejo también la presentación libro Ciencia y yo quiero ser científico

Un libro muy completo de mas de 400 páginas que incluyen relatos de astrofísicos, químicos y demás científicos de distintas ramas de la ciencia con varias ilustraciones.

Si más introducción enlace de descarga aquí

Espero lo disfruten!!

saludos

Medicina Veterinaria UNRN Ingreso. Pizarra Digital

Hola y bienvenidos a todos los nuevos ingresantes de la carrera de Medicina Veterinaria de la Universidad Nacional de Río Negro. En este post, les dejo la pizarra digital con el material que necesitarán durante el curso Introductorio de la carrera

Espero les sea de utilidad. Pueden verlo aquí mismo (debajo) o abrir el enlace aquí

Made with Padlet
Pizarra digital Padlet

Saludos a todos y a estudiar!!

Blog del repositorio digital CSIC

El Blog de la Biblioteca del CID pretende ser un punto de encuentro para la difusión de la actividad de la biblioteca y delCentre d’Investigació i Desenvolupament “Josep Pascual Vila” (CID), así como un lugar donde descubrir información relacionada con la ciencia y la actividad científica que, de alguna manera, pueda resultar interesante o curiosa para los investigadores, el personal del centro y, por qué no, para todo aquel atraído/fascinado por la investigación y la ciencia.

Es para mí todo un honor figurar en el repositorio digital de CSIC y les agradezco el resumen de mi blog y claro que hagan la referencia

Link al blog

Saludos

a través de Desde Mendel hasta las moléculas

Monografías de alumnos: DEFICIENCIA DE PIRUVATO QUINASA (PK) en caninos

AUTORES:

  • RIOS GIMENA
  • CRUZ MICAELA

Curso de Genética Básica. Carrera de Veterinaria. Universidad Nacional de Río Negro. Argentina. 2017

By Flickr user dmealiffe
By Flickr user dmealiffe

Deficiencia de piruvato quinasa (PK) en caninos

Introducción

La anemia hemolítica es un trastorno que genera la disminución de la masa de globulos rojos sanguíneos y puede ser causada por diferentes alteraciones, una de ellas es a nivel genético debido a una mutación del gen PKLR. Esta es una alteración autosómica recesiva que se caracteriza por una disminución en la actividad catalítica de la enzima piruvato quinasa. Este trastorno provoca que los glóbulos rojos se destruyan mas rápido de lo que la medula ósea pueda producirlos. El animal afectado puede presentar diferentes signos clínicos, como mucosas pálidas, aumento del ritmo cardiaco y una tolerancia reducida al ejercicio. Las razas más susceptibles a esta deficiencia son Labrador Retriever, Pug, Beagle y Basenji.

¿Qué es la piruvato quinasa?

La piruvato quinasa es una enzima importante en el metabolismo energético de los glóbulos rojos. Se trata de una enzima de la vía glucolítica y su actividad enzimática proporciona la mitad de la energía (moléculas de ATP) producida en dicha vía, en el interior del eritrocito. La falta de energía en forma de ATP hace que se altere el equilibrio dentro del hematíe y se pierda agua y potasio que hay en su interior, generando una deshidratación de la célula y su posterior lisis. Este trastorno hereditario causa una deficiencia en esta enzima que genera un marcado agotamiento de la vida útil de los glóbulos rojos y, por lo tanto, una anemia hemolítica grave, produciendo un bajo hematocrito debido a la lisis celular.(Harvey, JW 1995); (Henderson A, 2007)

Existen 4 variantes de la enzima PK las cuales son específicas de cada tejido, entre las mas importante a destacar se encuentran: M2: ubicada en músculo esquelético; la tipo R: presente en eritrocitos, y la tipo L: localizadas en el hepatocito. En un estudio realizado en perros de raza Basenjis, se ha demostrado que este trastorno genera una deficiencia en la actividad catalítica de la enzima piruvato quinasa tipo R, por lo tanto el organismo intenta compensarlo, aumentado las concentraciones de PK-M2 en eritrocitos. (Whitney KM, 1994)

¿Quién codifica a piruvato quinasa?

El gen responsable de codificar a la enzima piruvato quinasa se lo conoce como gen  PK-LR o también conocido como PK1; PKL; PKR; RPK, ubicado en el cromosoma 7 de los caninos.

La longitud de este gen es de 1972 pb, y presenta 12 exones.

La siguiente imagen corresponde al gen PKLR y su recuento de exones. Se pueden observar las diferentes variantes ya sea tipo R o L, en el cual el recuento de exones se reduce a 11. Esto se debe al proceso de maduración de ARN o también llamado splicing alternativo o empalme alternativo, en el cual se van todos los intrones y solamente quedan los exones, que permite obtener diferentes tipos de ARN mensajero y por ende diferentes isoformas de proteínas específicas de cada tejido.

PKLR figura 1
Fuente: NCBI

Figura 1. Esquema del gen PKLR en caninos

Figura 2 Genetica (2)
Figura 2. Variantes del gen PKLR en diferentes tejidos. Por Ríos, G. y Cruz, M

¿Cómo se hereda?

La deficiencia de la enzima piruvato quinasa es un rasgo autosómico recesivo que significa que ambos padres de un perro afectado son portadores del trastorno. Los portadores tienen aproximadamente la mitad de la actividad enzimática normal en los glóbulos rojos y no se ven afectados clínicamente. Si se aparean dos portadores pueden producir descendencia afectada. (Harvey, JW y col, 1995)

Dicho trastorno es un típico caso de dominancia incompleta o codominancia en la cual los homocigotas son fenotípicamente diferentes a los heterocigotas, no existe un rasgo dominante ni tampoco recesivo, pero la enfermedad se manifiesta en la descendencia.

Gametas           Hembra

Macho

 Aa
AAAAa
aAaaa

GENOTIPO                  FENOTIPO

AA  25%                      1/4  SANO

Aa  50%                       1/2PORTADOR

aa  25%                       1/4  ENFERMO

Figura 3. Cuadro de un entrecruzamiento de dos individuos heterocigotas, portadores. Por Ríos, G. y Cruz, M.

Los perros con deficiencia de PK generalmente muestran signos de los 4 meses a 1 año de edad. Son lentos para crecer y muestran una leve debilidad y baja tolerancia al ejercicio. También muestran cambios en sus huesos, específicamente el reemplazo de la medula ósea por tejido fibroso y el endurecimiento o la densidad anormal del hueso (llamada mielofibrosis y osteoclerosis). Los perros con esta deficiencia por lo general mueren antes de los 4 años de edad debido a insuficiencia de la medula ósea y/o enfermedad hepática. (Harvey y col, 1995)

Mutaciones

Los resultados de los estudios realizados en diferentes razas de perros se pueden obtener de distintas regiones del gen, según se localice en cada raza. Cabe destacar que estos datos fueron obtenidos de un estudio realizado en el año 2012 con el objetivo de determinar la causa de la deficiencia de esta enzima en caninos. A continuación se describen las mutaciones puntuales para cada caso:

Labrador Retriever: el lugar donde ocurre la mutación se presenta en el exón 7, en el cual se genera un cambio en la base 799, de citocina por timina en el gen PKLR (mutación o sustitución de sentido erróneo), dando como resultado un codón de stop prematuro (TAA) debido a la terminación temprana de la enzima, la cual carece de sitios activos importantes en la unión al sustrato. (G. InalGultekin y col. 2012)

Esquema de la mutación del gen PKLR en canino de raza Labrador Retriever, cambio de Citocina por Timina en la base 799. Por Ríos, G. y Cruz, M.
Figura 4. Esquema de la mutación del gen PKLR en canino de raza Labrador Retriever, cambio de Citocina por Timina en la base 799. Por Ríos, G. y Cruz, M.

Pug: se encontró una sustitución en el exón 7, en la base 848 que origino un cambio de timina por citocina, esta mutación puntual cambia a GTC que codifica valina, en GCT que codifica alanina, generando una proteína diferente con una mínima actividad catalítica.(G. InalGultekin y col. 2012)

squema de la mutación del gen PKLR en un canino de raza Pug, sustitución de Timina por Citocina en la base 848, generando una proteína diferente. Por Ríos, G. y Cruz, M.
Figura 5. Esquema de la mutación del gen PKLR en un canino de raza Pug, sustitución de Timina por Citocina en la base 848, generando una proteína diferente. Por Ríos, G. y Cruz, M.

Beagle: se descubrió una mutación de sustitución de una sola base en el exón 8 del gen PK-LR. (sustitución de sentido erróneo) Esta mutación puntual cambia el codón GGC a AGC y así reemplaza a una glicina por una serina. Sólo la glicina es tolerada en esta posición por lo tanto es muy probable que esta mutación cause una proteína no funcional. (G. InalGultekin y col. 2012)

Esquema de la mutación del gen PKLR en canino de raza Beagle, sustitución de Guanina por Alanina generando una proteína diferente no funcional. Por Ríos, G. y Cruz, M.
Figura 6. Esquema de la mutación del gen PKLR en canino de raza Beagle, sustitución de Guanina por Alanina generando una proteína diferente no funcional. Por Ríos, G. y Cruz, M.

METODOS DE DIAGNOSTICO MOLECULAR

Las mutaciones fueron detectadas por PCR-RFLP en perros de raza Labrador, Pug y Beagle.

El segmento a amplificar fue de 188 pares de bases del exón 7. Los productos fueron digeridos con enzimas de restricción que cortan, en el  labrador al alelo silvestre 2 veces produciendo 3 fragmentos, de 96, 46, 46. El alelo afectado, en cambio,es cortado solamente 1 vez, produciendo un fragmento de 142 y 46 pb ya que la enzima no reconoce un sitio de corte al cambiar una base por otra. (G. InalGultekin y col. 2012)

En el caso del pug los productos de la digestión, son cortados en 2 bandas de 141 y 47 pb para el alelo normal, mientras que al alelo mutante le falta el sitio de restricción y no corta, mostrando así los 188 pb.

Por último, en el caso de los Beagle, la digestión corta al alelo silvestre de 109 pb en un fragmento de 90 y otro de 19 pb, mientras que el alelo mutante no se digiere, mostrando la banda no cortada a 109 pb. El segmento que se amplifico en esta raza se obtuvo del exón 8.(G. InalGultekin y col. 2012)

Esquema del producto de amplificación para raza en particular. Por Ríos, G. y Cruz, M.
Figura 7. Esquema del producto de amplificación para raza en particular. Por Ríos, G. y Cruz, M.

IMPORTANICIA DE SU DIAGNOSTICO

Debido a que es un rasgo autonómico recesivo, ambos padres de los perros afectados portan el gen defectuoso. Los individuos heterocigotos generalmente son asintomáticos y puede ser difícil detectar signos clínicos en ellos, por eso, es útil comprobar la presencia de la enfermedad antes de la reproducción. Este es uno de los factores más importante a tener en cuenta en los lugares dedicados a la cría, ni los perros afectados (homocigota recesivo) ni los portadores (heterocigota) deben utilizarse en la reproducción, debe ser un conocimiento fundamental para los criadores que buscan detectar portadores y eliminarlos de la población reproductiva. (Gultekin GI, y col. 2012)

Actualmente se han registrado 10 casos de deficiencia de PK en todo Estados unidos, 40 en Europa y 11 en Sudamérica. Pero se sospecha que la incidencia es mayor debido a que la mayoría de los perros utilizados para detectar la deficiencia de PK proviene de casas de cría. (G. Inal Gultekin y col, 2012)

Conclusión:

Debe considerarse la deficiencia de la enzima piruvato quinasa en caninos como una importante alteración que produce una anemia hemolítica grave y pone en riesgo la calidad y tiempo de vida del animal, limitándose a ciertas razas de perros particularmente. Es una alteración autosómica recesiva, siendo ambos padres del afectado, portadores de la mutación, por eso es importante conocer esta patología y detectar animales afectados o portadores de ésta, para no seguir aumentando el porcentaje de caninos con dicha deficiencia.

Bibliografía:

Harvey, JW 1995. Anemias hemolíticas congénitas y metahemoglobinemias. ACVIM-Proceedings del 13. ° Foro Médico Veterinario Anual: 37-40.
Henderson A. Anemia, Hemolítico. En: Côté E, ed. Asesor Clínico Veterinario Perros y Gatos. Missouri: MosbyElsevier, 2007: 64-66.
Sargan DR. Deficiencia de piruvato quinasa. Disponible en 
vetGen : información sobre pruebas genéticas disponibles (basenjis y terriers blancos de las Highlands occidentales)

Inal Gultekin, G., Raj, K., Foureman, P., Lehman, S., Manhart, K., Abdulmalik, O., & Giger, U. (2012).Erythrocytic pyruvate kinase mutations causing hemolytic anemia, osteosclerosis, and secondary hemochromatosis in dogs. Journal of veterinaryinternal medicine, 26(4), 935-944.

Whitney, K. M., Goodman, S. A., Bailey, E. M., & Lothrop Jr, C. D. (1994). The molecular basis of canine pyruvate kinase deficiency. Experimental hematology, 22(9), 866-874.

WHITNEY, K. M., et al. The molecular basis of canine pyruvate kinase deficiency. Experimental hematology, 1994, vol. 22, no 9, p. 866-874.

Mas información: aqui

y aquí:

Síndrome overo letal blanco. Monografía de alumnos Genética Básica

Nuevamente quiero dejarles una monografía realizada por dos de mis alumnos de Genética Básica 2017, en este caso Shaira Fernández y Emilio Torres, sobre una enfermedad hereditaria en caballos, el Síndrome Overo Letal Blanco, también conocido como OLWS. Felicitaciones por el trabajo y espero ayude a muchos otros que buscan información sobre el tema.

Tema: Monografía de enfermedad genética hereditaria

Autores: Shaira Fernández – Emilio Torres

Año: 2017

Docentes: Gabriela Iglesias – María Pía Beker

Carrera: Medicina Veterinaria

Materia: Genética Básica

Universidad Nacional de Rio Negro- Sede Alto Valle y Valle Medio (AVVM)

Introducción:

Los objetivos del presente trabajo son profundizar conocimientos genéticos sobre el síndrome overo letal blanco en caballos de la raza Cuarto de Milla Americana principalmente y otras como pintados, caballos miniatura, árabes y occidentales.

El síndrome del potro blanco letal overo se conoce como aganglionosis ileocolica y está directamente relacionado con el gen EDNRB ubicado en el cromosoma 17.

Los patrones de overo blanco son causados por un solo gen (dominante) por lo contrario los caballos con dos copias del gen (recesivo) nacen completamente blancos, (Horse: University of Minnesota Extension, 2017) causando la muerte de los potrillos poco después del nacimiento debido a defectos en el desarrollo embriológico de este, alterando la migración de las células de la cresta neural, las células progenitoras de los melanocitos y ganglios intestinales. (Horse Genome Project, 2017)

Se han descubierto similitudes entre el gen O y el gen que causa la enfermedad de Hirschsprung en humanos. La mutación esta en un lugar diferente en el gen pero causa los mismos efectos: manchas blancas y defectos del desarrollo. (Horse: University of Minnesota Extension, 2017)

Contenido:  

En los caballos hay 32 pares de cromosomas, cada célula del cuerpo de un caballo contiene dos copias de cada cromosoma, una de la madre y otra del padre. (Horse Genetics,2017). El alelo overo muestra pleíotropia que significa que tiene más de un efecto sobre el fenotipo. (Horse Genetics, 2017)

Los potrillos nacen con ojos azules y una bata blanca, y pueden tener pequeñas manchas negras a lo largo de la cabeza, cola y melena. Luego de un tiempo comienzan con cólicos debido a que no pueden defecar, a causa de un mal desarrollo del sistema nervioso gastrointestinal. Las células embrionarias encargadas de formar los nervios mencionados anteriormente también determinan el color de piel. (Horse: University of Minnesota Extension, 2017)

La mutación que causa esta patología es una sustitución de sentido erróneo, que provoca el cambio de lisina por isoleucina, esto ocurre en el codón 118 del receptor de la endotelina B (EDNRB) que está localizado en el cromosoma 17. (Universidad de California Santa Cruz, 2008). Esta proteína está asociada a la regulación del desarrollo de las células de la cresta neural que se convierten en ganglios entéricos y melanocitos. (Santschi, 1998)

Cabe destacar que la sustitución ocurre en el primer dominio transmembrana de un receptor acoplado a la proteína G de 7 dominios transmembrana para las endotelinas. (Baynash et al., 1994; Hosoda et al., 1994).

Características propias del gen:

Gen: EDNRB

Titulo: receptor de endotelina tipo B

Mutación: ocurre en codón 118 de EDNRB

Localización: cromosoma 17

Recuento de exones: 8

Longitud: 24,536 pares de bases (bp)

Fuente: EDNRB endothelin receptor type B [Equus caballus (horse)] – Gene – NCBI. (2017).

Mutación del ADN: NM 001081837.1:c.353_354delinsAG

Efecto previsto de la mutación: Interrupción de aminoácidos (isoleucina 118 por lisina)

Fuente: Bellone, R. (2010).

figura 1 corregida
Figura 1: Secuencia gen EDNRB. Fuente: EDNRB endothelin receptor type B [Equus caballus (horse)] – Gene – NCBI. (2017).
figura 2
Figura 2: Gen endotelina B. Fuente: EDNRB endothelin receptor type B [Equus caballus (horse)] – Gene – NCBI. (2017)

Diagnóstico :

PCR especifica de alelo, es una de las variaciones de la PCR básica que se usa para identificar o utilizar los polimorfismos de una sola base (SNPs). Se utilizan primers específicos para la secuencia normal y mutante. El diseño más habitual de esta técnica es un análisis en dos tubos con dos primers: uno normal y otro mutante en reacciones separadas junto con los primers control. (Reacción en cadena de la polimerasa. Es.wikipedia.org, 2017)

La reacción de cadena en la polimerasa (PCR) alelo especifica es la técnica de genética molecular utilizada para identificar a los caballos reproductores en riesgo de transmitir el gen letal a sus descendientes.  Para analizar el ADN se extrae sangre o muestras de cabello con raíces. (Horse Genetic ,2017).

Esta técnica permite amplificar el ADN, produciendo cantidades relativamente grandes para analizar su secuencia génica, expresión génica. Los materiales para llevar a cabo la reacción vienen incluidos en un KIT con uno o más cebadores de oligonucleótidos (cadenas cortas de nucleótidos), tampón de reacción de PCR, enzima de ADN polimerasa, materiales de análisis de electroforesis en gel e instrucciones para llevar a cabo reacciones de PCR. (Metallinos et al. 2002)

Descripción de la técnica:

En este caso es un método para identificar un gen del receptor de endotelina B de tipo salvaje y la mutación, amplificando una porción del gen del receptor de endotelina B de una muestra biológica de caballo usando cebadores/primers denominados SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 13, SEQ ID NO: 14 y SEQ ID NO: 15 en reacciones de amplificación en las que da como resultado la generación de polinucleótidos de 174, 105 y 90 bp. (Metaliinos et al. 2002).

figura 3 primers
Figura 3: grupo de primers que se utilizaron para llevar a cabo la técnica PCR alelo específica. Fuente: patente US 6372900 B1 – Horse Endothelin-b Receptor Gene And Gene Products The Lens

La Figura 4 muestra la orientación y posición de los cebadores usados en un ensayo de reacción en cadena de la polimerasa (PCR) para detectar la mutación de dos pares de bases asociada con el Síndrome Overo Letal Blanco. Las flechas indican el extremo 3 ‘ de cada cebador. El recuadro alrededor de las bases TC-AG, muestra la diferencia de secuencia de dos pares de bases entre el caballo de tipo salvaje y el ADN de caballo blanco letal.

figura-4.jpg
Figura 4: Esquema de la secuencia y los primers u oligonucleótidos usados para la amplificación en una PCR alelo específica. Fuente: patente US 6372900 B1 – Horse Endothelin-b Receptor Gene And Gene Products The Lens.
figura-5.jpg
Figura 5: muestra los resultados de una reacción de PCR realizada en un gel de poliacrilamida al 12% y teñida con bromuro de etidio. Fuente: patente US 6372900 B1 – Horse Endothelin-b Receptor Gene and Gene Products The Lens

En la Figura 5 observamos el carril 1 que es el producto de PCR de una muestra de caballo heterocigota; el carril 2 es el producto de PCR de la muestra de caballo de potro blanco letal y el carril 3 es el producto de PCR de una muestra homocigótica de caballo salvaje.
Se puede observar que cada carril tiene el control de 174 pares de bases para la reacción de PCR resultante de la amplificación con los cebadores E1.F y E1.R. Los carriles 1 y 2 tienen el producto específico blanco letal de 105 pares de bases resultante de la amplificación con los primers lw2. F y E1.R. Los carriles 1 y 3 tienen el producto específico de tipo salvaje de 90 pares de bases resultante de la amplificación con los cebadores wt2.F y E1-2.F.
( Patente US 6372900 B1 – Horse Endothelin-b Receptor Gene And Gene Products The Lens).
En conclusión se puede distinguir un producto del alelo blanco letal de 105 pb y alelo tipo salvaje de 90 pb. Por lo tanto los portadores del alelo del potro letal blanco pueden identificarse fácilmente por PCR.

Aplicaciones más importantes de esta técnica: detectar alelos de un gen normal y mutado (enfermedades hereditarias), portadores (individuos que presentan un fenotipo normal, pero son capaces de transmitir a su descendencia un carácter indeseable que los predispone a padecer una patología). Por lo general este carácter sigue un modelo de herencia simple recesiva, de tal modo que solo las homocigotas recesivas presentan el fenotipo indeseable. (Técnicas de biología molecular, 2008)

Modo de transmisión a la descendencia:

La herencia del gen se caracteriza por ser:

  • Autosómica recesiva
  • Expresividad variable
  • Es Letal
  • Penetrancia incompleta

Fuente: (the “genetics”of beeding horse journals, 2013).

capture-20171120-204132

Figura 6: Esquema de modo de herencia del gen overo letal blanco. Fuente: (Santschi et al.,1998)

El apareamiento de dos overos heterocigotos dará como resultado promedio un 25 % de potros con el gen letal overo blanco, esto quiere decir que hay una probabilidad de 1 en 4 de que nazca un overo blanco letal, los demás descendientes serán overos de color sólido o heterocigotos.

Los potros afectados son homocigotos para el gen Lys (Lys 118/Lys 118) y los portadores son heterocigotos (Ile 118/Lys 118).

La incidencia de heterocigotos OLWS es muy alta, mas de 94% en caballos marco overo muy blanco y mezclas de marco overo. Un 21% de incidencia de heterocigotos OLWS blancos con patrones de color incluyen al tobiano, sabino. (Santschi et al; 2001).

Se recomienda cruzar caballos sólidos con overos que dan como resultado potros sólidos y overos en igual número sin aparecer potros con el gen letal. Ocasionalmente los caballos sin patrones apreciables de manchas corporales han engendrado potros con LWO (letal White overo) incluida la raza cuarto de milla. Algunos caballos que llevan el gen overo letal blanco pueden tener poco o ningún color blanco en ellos. (lethal white overo horses, 2017)

Debido a esto no se puede deducir el genotipo necesariamente a partir del color del pelaje. (Metallinos et al., 1998)

Prevención y control:

  • Principalmente un diagnostico PCR  dirigido a todos los overos de cuadro y sus descendientes.
  • Pelajes similares como: tobiano, pintado.
  • Prevención en la adquisición de un ejemplar equino

Conclusión:

Concluimos que conocer la genética del caballo nos sirve para su mejoramiento ya que los genes son como si fueran piezas de un código que indica cómo se va a construir molecularmente un organismo y su funcionamiento. Además debemos recordar que los trastornos genéticos van a ser heredados y que a simple vista no podemos diagnosticarlos ya que los pelajes pueden resultar engañosos, para ello es necesario conocer el árbol genealógico del animal o realizar una técnica de diagnostico molecular (PCR),  la cual está a nuestro alcance en Argentina solo que debemos mandar a sintetizar los primers específicos y contar con la infraestructura necesaria para realizarlo.

A lo largo de esta investigación podemos afirmar que el síndrome overo letal blanco es una enfermedad genética a tener en cuenta sobre todo en caballos de la raza cuarto de milla, pese a las excepciones ya nombradas en otras razas, siendo de pronóstico grave y sin tratamiento que termina en la muerte del potrillo entre las 12-24 horas aproximadamente luego de su nacimiento.  Si bien la bibliografía nos lleva a casos de otros países debemos prever la posibilidad de que suceda en Argentina y saber actuar al respecto.

Con estas herramientas de diagnostico podemos proveer información acerca del gen letal para criadores y haras con el fin de prevenir el nacimiento indeseado de potrillos con este síndrome y además a las personas dispuestas a adquirir un ejemplar. Como parte de nuestra formación en medicina veterinaria creemos imprescindible el asesoramiento para evitar pérdidas.

Bibliografía:

·         Horse Genome Project. (2017). Uky.edu. Retrieved 24 October 2017, from http://www.uky.edu/Ag/Horsemap/

·         Finno, C., Spier, S., & Valberg, S. (2009), Equine diseases caused by known genetic mutatios. The Veterinary Journal, 179(3), 336-347.doi:10.1016/j.tvjl.2008.03.016

·         Santschi, E., Purdy, A., Valberg, S., Vrotsos, P., Kaese, H., & Mickelson, J. (1998). Endothelin receptor B polymorphism associated with lethal white foal syndrome in horses. Mammalian Genome, 9(4), 306-309. doi:10.1007/s003359900754

·         Lethal white overo horses. (2017). Horse-genetics.com. Retrieved 24 October 2017, from http://www.horse-genetics.com/overo-horses-LWO.html (Overo lethal white syndrome (OLWS) : Horse : University of Minnesota Extension
·         Overo lethal white syndrome (OLWS) : Horse : University of Minnesota Extension. (2017). Extension.umn.edu. Retrieved 24 October 2017, from https://www.extension.umn.edu/agricult)
·         Horse Genome Project. (2017). Uky.edu. Retrieved 24 October 2017, from http://www.uky.edu/Ag/Horsemap/hgpd
·         lethal white overo horses. (2017). Horse-genetics.com. Retrieved 24 October 2017, from http://www.horse-genetics.com/overo-horses-LWO.html
·         (Overo lethal white syndrome (OLWS) : Horse : University of Minnesota Extension (2017). Extension.umn.edu. Retrieved 24 October 2017, from https://www.extension.umn.edu/agricult
·         TÉCNICAS DE BIOLOGÍA MOLECULAR. (2008). Desde Mendel hasta las moléculas
·         Patente US 6372900 B1 – Horse Endothelin-b Receptor Gene And Gene Products The Lens. (2017). The Lens.
·         EDNRB endothelin receptor type B [Equus caballus (horse)] – Gene – NCBI. (2017). Ncbi.nlm.nih.gov
·         Bellone, R. (2010). Pleiotropic effects of pigmentation genes in horses. Animal Genetics, 41(s2), 100-110.
·         Danika Metallinos, Portola Valley, California (EE. UU.); Jasper Rine , Moraga, California (EE. UU.); y Ann Bowling, Davis, California (EE. UU.), 2002

Síndrome overo letal blanco (OLWS). Monografía de alumnos Genética Básica

Fuente: https://www.facebook.com/SobreCaballos/photos/a.481816315195221.107974.479648582078661/1066990530011127/?type=3&theater

Nuevamente quiero dejarles una monografía realizada por dos de mis alumnos de Genética Básica 2017, en este caso Shaira Fernández y Emilio Torres, sobre una enfermedad hereditaria en caballos, el Síndrome Overo Letal Blanco, también conocido como OLWS. Felicitaciones por el trabajo y espero ayude a muchos otros que buscan información sobre el tema.

Tema: Monografía de enfermedad genética hereditaria

Autores: Shaira Fernández – Emilio Torres

Año: 2017

Docentes: Gabriela Iglesias – María Pía Beker

Carrera: Medicina Veterinaria

Materia: Genética Básica

Universidad Nacional de Rio Negro- Sede Alto Valle y Valle Medio (AVVM)

Introducción:

Los objetivos del presente trabajo son profundizar conocimientos genéticos sobre el síndrome overo letal blanco en caballos de la raza Cuarto de Milla Americana principalmente y otras como pintados, caballos miniatura, árabes y occidentales.

El síndrome del potro blanco letal overo se conoce como aganglionosis ileocolica y está directamente relacionado con el gen EDNRB ubicado en el cromosoma 17.

Los patrones de overo blanco son causados por un solo gen (dominante) por lo contrario los caballos con dos copias del gen (recesivo) nacen completamente blancos, (Horse: University of Minnesota Extension, 2017) causando la muerte de los potrillos poco después del nacimiento debido a defectos en el desarrollo embriológico de este, alterando la migración de las células de la cresta neural, las células progenitoras de los melanocitos y ganglios intestinales. (Horse Genome Project, 2017)

Se han descubierto similitudes entre el gen O y el gen que causa la enfermedad de Hirschsprung en humanos. La mutación esta en un lugar diferente en el gen pero causa los mismos efectos: manchas blancas y defectos del desarrollo. (Horse: University of Minnesota Extension, 2017)

Contenido:  

En los caballos hay 32 pares de cromosomas, cada célula del cuerpo de un caballo contiene dos copias de cada cromosoma, una de la madre y otra del padre. (Horse Genetics,2017). El alelo overo muestra pleíotropia que significa que tiene más de un efecto sobre el fenotipo. (Horse Genetics, 2017)

Los potrillos nacen con ojos azules y una bata blanca, y pueden tener pequeñas manchas negras a lo largo de la cabeza, cola y melena. Luego de un tiempo comienzan con cólicos debido a que no pueden defecar, a causa de un mal desarrollo del sistema nervioso gastrointestinal. Las células embrionarias encargadas de formar los nervios mencionados anteriormente también determinan el color de piel. (Horse: University of Minnesota Extension, 2017)

La mutación que causa esta patología es una sustitución de sentido erróneo, que provoca el cambio de lisina por isoleucina, esto ocurre en el codón 118 del receptor de la endotelina B (EDNRB) que está localizado en el cromosoma 17. (Universidad de California Santa Cruz, 2008). Esta proteína está asociada a la regulación del desarrollo de las células de la cresta neural que se convierten en ganglios entéricos y melanocitos. (Santschi, 1998)

Cabe destacar que la sustitución ocurre en el primer dominio transmembrana de un receptor acoplado a la proteína G de 7 dominios transmembrana para las endotelinas. (Baynash et al., 1994; Hosoda et al., 1994).

Características propias del gen:

Gen: EDNRB

Titulo: receptor de endotelina tipo B

Mutación: ocurre en codón 118 de EDNRB

Localización: cromosoma 17

Recuento de exones: 8

Longitud: 24,536 pares de bases (bp)

Fuente: EDNRB endothelin receptor type B [Equus caballus (horse)] – Gene – NCBI. (2017).

Mutación del ADN: NM 001081837.1:c.353_354delinsAG

Efecto previsto de la mutación: Interrupción de aminoácidos (isoleucina 118 por lisina)

Fuente: Bellone, R. (2010).

figura 1 corregida

Figura 1: Secuencia gen EDNRB. Fuente: EDNRB endothelin receptor type B [Equus caballus (horse)] – Gene – NCBI. (2017).

 

figura 2

Figura 2: Gen endotelina B. Fuente: EDNRB endothelin receptor type B [Equus caballus (horse)] – Gene – NCBI. (2017)

Diagnóstico :

PCR especifica de alelo, es una de las variaciones de la PCR básica que se usa para identificar o utilizar los polimorfismos de una sola base (SNPs). Se utilizan primers específicos para la secuencia normal y mutante. El diseño más habitual de esta técnica es un análisis en dos tubos con dos primers: uno normal y otro mutante en reacciones separadas junto con los primers control. (Reacción en cadena de la polimerasa. Es.wikipedia.org, 2017)

La reacción de cadena en la polimerasa (PCR) alelo especifica es la técnica de genética molecular utilizada para identificar a los caballos reproductores en riesgo de transmitir el gen letal a sus descendientes.  Para analizar el ADN se extrae sangre o muestras de cabello con raíces. (Horse Genetic ,2017).

Esta técnica permite amplificar el ADN, produciendo cantidades relativamente grandes para analizar su secuencia génica, expresión génica. Los materiales para llevar a cabo la reacción vienen incluidos en un KIT con uno o más cebadores de oligonucleótidos (cadenas cortas de nucleótidos), tampón de reacción de PCR, enzima de ADN polimerasa, materiales de análisis de electroforesis en gel e instrucciones para llevar a cabo reacciones de PCR. (Metallinos et al. 2002)

Descripción de la técnica:

En este caso es un método para identificar un gen del receptor de endotelina B de tipo salvaje y la mutación, amplificando una porción del gen del receptor de endotelina B de una muestra biológica de caballo usando cebadores/primers denominados SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 13, SEQ ID NO: 14 y SEQ ID NO: 15 en reacciones de amplificación en las que da como resultado la generación de polinucleótidos de 174, 105 y 90 bp. (Metaliinos et al. 2002).

figura 3 primers

Figura 3: grupo de primers que se utilizaron para llevar a cabo la técnica PCR alelo específica. Fuente: patente US 6372900 B1 – Horse Endothelin-b Receptor Gene And Gene Products The Lens

La Figura 4 muestra la orientación y posición de los cebadores usados en un ensayo de reacción en cadena de la polimerasa (PCR) para detectar la mutación de dos pares de bases asociada con el Síndrome Overo Letal Blanco. Las flechas indican el extremo 3 ‘ de cada cebador. El recuadro alrededor de las bases TC-AG, muestra la diferencia de secuencia de dos pares de bases entre el caballo de tipo salvaje y el ADN de caballo blanco letal.

figura-4.jpg

Figura 4: Esquema de la secuencia y los primers u oligonucleótidos usados para la amplificación en una PCR alelo específica. Fuente: patente US 6372900 B1 – Horse Endothelin-b Receptor Gene And Gene Products The Lens.

figura-5.jpg

Figura 5: muestra los resultados de una reacción de PCR realizada en un gel de poliacrilamida al 12% y teñida con bromuro de etidio. Fuente: patente US 6372900 B1 – Horse Endothelin-b Receptor Gene and Gene Products The Lens

En la Figura 5 observamos el carril 1 que es el producto de PCR de una muestra de caballo heterocigota; el carril 2 es el producto de PCR de la muestra de caballo de potro blanco letal y el carril 3 es el producto de PCR de una muestra homocigótica de caballo salvaje.
Se puede observar que cada carril tiene el control de 174 pares de bases para la reacción de PCR resultante de la amplificación con los cebadores E1.F y E1.R. Los carriles 1 y 2 tienen el producto específico blanco letal de 105 pares de bases resultante de la amplificación con los primers lw2. F y E1.R. Los carriles 1 y 3 tienen el producto específico de tipo salvaje de 90 pares de bases resultante de la amplificación con los cebadores wt2.F y E1-2.F.
( Patente US 6372900 B1 – Horse Endothelin-b Receptor Gene And Gene Products The Lens).
En conclusión se puede distinguir un producto del alelo blanco letal de 105 pb y alelo tipo salvaje de 90 pb. Por lo tanto los portadores del alelo del potro letal blanco pueden identificarse fácilmente por PCR.

Aplicaciones más importantes de esta técnica: detectar alelos de un gen normal y mutado (enfermedades hereditarias), portadores (individuos que presentan un fenotipo normal, pero son capaces de transmitir a su descendencia un carácter indeseable que los predispone a padecer una patología). Por lo general este carácter sigue un modelo de herencia simple recesiva, de tal modo que solo las homocigotas recesivas presentan el fenotipo indeseable. (Técnicas de biología molecular, 2008)

Modo de transmisión a la descendencia:

La herencia del gen se caracteriza por ser:

  • Autosómica recesiva
  • Expresividad variable
  • Es Letal
  • Penetrancia incompleta

Fuente: (the “genetics”of beeding horse journals, 2013).

capture-20171120-204132

Figura 6: Esquema de modo de herencia del gen overo letal blanco. Fuente: (Santschi et al.,1998)

El apareamiento de dos overos heterocigotos dará como resultado promedio un 25 % de potros con el gen letal overo blanco, esto quiere decir que hay una probabilidad de 1 en 4 de que nazca un overo blanco letal, los demás descendientes serán overos de color sólido o heterocigotos.

Los potros afectados son homocigotos para el gen Lys (Lys 118/Lys 118) y los portadores son heterocigotos (Ile 118/Lys 118).

La incidencia de heterocigotos OLWS es muy alta, mas de 94% en caballos marco overo muy blanco y mezclas de marco overo. Un 21% de incidencia de heterocigotos OLWS blancos con patrones de color incluyen al tobiano, sabino. (Santschi et al; 2001).

Se recomienda cruzar caballos sólidos con overos que dan como resultado potros sólidos y overos en igual número sin aparecer potros con el gen letal. Ocasionalmente los caballos sin patrones apreciables de manchas corporales han engendrado potros con LWO (letal White overo) incluida la raza cuarto de milla. Algunos caballos que llevan el gen overo letal blanco pueden tener poco o ningún color blanco en ellos. (lethal white overo horses, 2017)

Debido a esto no se puede deducir el genotipo necesariamente a partir del color del pelaje. (Metallinos et al., 1998)

Prevención y control:

  • Principalmente un diagnostico PCR  dirigido a todos los overos de cuadro y sus descendientes.
  • Pelajes similares como: tobiano, pintado.
  • Prevención en la adquisición de un ejemplar equino

Conclusión:

Concluimos que conocer la genética del caballo nos sirve para su mejoramiento ya que los genes son como si fueran piezas de un código que indica cómo se va a construir molecularmente un organismo y su funcionamiento. Además debemos recordar que los trastornos genéticos van a ser heredados y que a simple vista no podemos diagnosticarlos ya que los pelajes pueden resultar engañosos, para ello es necesario conocer el árbol genealógico del animal o realizar una técnica de diagnostico molecular (PCR),  la cual está a nuestro alcance en Argentina solo que debemos mandar a sintetizar los primers específicos y contar con la infraestructura necesaria para realizarlo.

A lo largo de esta investigación podemos afirmar que el síndrome overo letal blanco es una enfermedad genética a tener en cuenta sobre todo en caballos de la raza cuarto de milla, pese a las excepciones ya nombradas en otras razas, siendo de pronóstico grave y sin tratamiento que termina en la muerte del potrillo entre las 12-24 horas aproximadamente luego de su nacimiento.  Si bien la bibliografía nos lleva a casos de otros países debemos prever la posibilidad de que suceda en Argentina y saber actuar al respecto.

Con estas herramientas de diagnostico podemos proveer información acerca del gen letal para criadores y haras con el fin de prevenir el nacimiento indeseado de potrillos con este síndrome y además a las personas dispuestas a adquirir un ejemplar. Como parte de nuestra formación en medicina veterinaria creemos imprescindible el asesoramiento para evitar pérdidas.

Bibliografía:

·         Horse Genome Project. (2017). Uky.edu. Retrieved 24 October 2017, from http://www.uky.edu/Ag/Horsemap/

·         Finno, C., Spier, S., & Valberg, S. (2009), Equine diseases caused by known genetic mutatios. The Veterinary Journal, 179(3), 336-347.doi:10.1016/j.tvjl.2008.03.016

·         Santschi, E., Purdy, A., Valberg, S., Vrotsos, P., Kaese, H., & Mickelson, J. (1998). Endothelin receptor B polymorphism associated with lethal white foal syndrome in horses. Mammalian Genome, 9(4), 306-309. doi:10.1007/s003359900754

·         Lethal white overo horses. (2017). Horse-genetics.com. Retrieved 24 October 2017, from http://www.horse-genetics.com/overo-horses-LWO.html (Overo lethal white syndrome (OLWS) : Horse : University of Minnesota Extension
·         Overo lethal white syndrome (OLWS) : Horse : University of Minnesota Extension. (2017). Extension.umn.edu. Retrieved 24 October 2017, from https://www.extension.umn.edu/agricult)
·         Horse Genome Project. (2017). Uky.edu. Retrieved 24 October 2017, from http://www.uky.edu/Ag/Horsemap/hgpd
·         lethal white overo horses. (2017). Horse-genetics.com. Retrieved 24 October 2017, from http://www.horse-genetics.com/overo-horses-LWO.html
·         (Overo lethal white syndrome (OLWS) : Horse : University of Minnesota Extension (2017). Extension.umn.edu. Retrieved 24 October 2017, from https://www.extension.umn.edu/agricult
·         TÉCNICAS DE BIOLOGÍA MOLECULAR. (2008). Desde Mendel hasta las moléculas
·         Patente US 6372900 B1 – Horse Endothelin-b Receptor Gene And Gene Products The Lens. (2017). The Lens.
·         EDNRB endothelin receptor type B [Equus caballus (horse)] – Gene – NCBI. (2017). Ncbi.nlm.nih.gov
·         Bellone, R. (2010). Pleiotropic effects of pigmentation genes in horses. Animal Genetics, 41(s2), 100-110.
·         Danika Metallinos, Portola Valley, California (EE. UU.); Jasper Rine , Moraga, California (EE. UU.); y Ann Bowling, Davis, California (EE. UU.), 2002

Enfermedades raras y epigenética

La epigenética desde hace uno años, ha sido objeto de profunda investigación. Son cambios en la regulación de la expresión de los genes, que se dan por modificaciones químicas del ADN (por ejemplo : metilaciones). Algunas enfermedades raras son de las estudiadas. Les dejo un video del Prof. Manel Esteller. Director del Programa de Epigenética y Biología del Cáncer del Instituto de Investigación Biomédica de Bellvitge (IDIBELL)

vimeo 220757609 w=640 h=360

Fuente: Una de cada cuatro enfermedades minoritarias presenta alteraciones de un gen epigenético.

Para saber más y leer sobre este tema: la entrevista completa aquí

Ganador 1ra. Mención Premio UBA 2017

BANNERS_2017-BLOG

Hola a todos los lectores; nuevamente el Blog ha sido distinguido con la 1ra. mención a de los Premios UBA a Edublogs en la categoría Individuales Universitarios o terciarios.

El premio UBA tiene como objetivo: reconocer el uso de las nuevas tecnologías, en la divulgación de contenidos culturales y científicos como, también, en su aprovechamiento como herramienta de apoyo en el proceso de enseñanza – aprendizaje en un contexto educativo, en 2012 se incorporó al Premio UBA a la divulgación de contenidos educativos en medios periodísticos nacionales, la categoría “Edublogs”. El de este año ya ha sido asignado. Les dejo la noticia de todos los ganadores: aquí: Ganadores del premio UBA 2017

Es honor que este Blog ya haya sido distinguido como ganador en 2012, recibió 2da mención en 2013, 2014 y 2016 y ahora por 5ta vez, 1ra mención. Sin dudas un honor para mí que no sería posible sin el apoyo de los lectores y usuarios en general del Blog (docentes de nivel medio, de universidades y todo tipo de estudiantes o personas ávidas de conocimientos, en especial mis alumnos que han hecho trabajos maravillosos que he tenido el placer de compartir aquí mismo con todos los lectores.

La entrega de premios se realizará el 11 de diciembre, como siempre en el Centro Cultural Rojas. Ya compartiré fotos con todos

Gracias a todos y a María Pía que se inicia conmigo en este camino!!!

Saludos y a festejar!!!