Genes de terneza. Ejercitacion resuelta

Introducción: La calidad de la carne constituye un importante factor de interés económico y es la terneza, el atributo más apreciado por los consumidores de todo el mundo. Sin embargo, es una característica de compleja medición en el momento de la faena.

Hoy la Argentina está a la vanguardia, junto con Australia y Estados Unidos, en los análisis que determinan la capacidad genética de los rodeos para producir carne tierna.

Trabajos científicos de los últimos años han demostrado que el “tiernizado” “post mortem” de las carnes se debe a la existencia de dos enzimas, Calpaína y Calpastatina que actuando en forma coordinada degradan las fibras musculares quitándoles el “rigor mortis” luego de la faena. La Calpaína es la enzima principal de estos procesos de maduración y las variantes más activas de la enzima confieren mayor terneza a la carne. La Calpastatina codifica para una fosforilaza, enzima inhibidora de la calpaína, según el estado alélico en que se encuentre. En forma inversa a la anterior, en este caso las variantes menos activas de esta enzima confieren mayor terneza.

Para cada marcador se ha encontrado una variante más favorable a la terneza (+) y una menos favorable (-). Al tener los bovinos dos alelos de cada gen, uno proveniente del padre y otro de la madre, para un animal hay entonces tres genotipos posibles para cada marcador.

En la actualidad el componente genético de la terneza se explica con la presencia de 4 mutaciones, 2 en el gen de Calpastatina (Calpastatina 2959 y Calpastatina UoG) y 2 en el gen de Calpaína (Calpaína 316 y Calpaína 4751). Por ejemplo, para el gen de la calpaína, la mutación en la posición 316 corresponde al cambio de una base en el ADN (citosina por guanina), que produce un cambio en la estructura de la proteína al reemplazar el aminoácido alanina (GCC) por glicina (GGC).

Dado que estos genes se heredan en forma mendeliana, es importante incluir en la ficha de cada animal tanto machos como hembras su genotipo para Calpaína y Calpastatina y su Índice de Terneza combinado. La información de los genes de terneza (genotipo) se incorpora en Resumen de Padres ANGUS (Catálogos).

Es importante remarcar, que estos marcadores son mas relevantes en la comercialización de carne fresca, es decir aquella que se comercializa cerca de la faena. En nuestro país, 80 %  de la faena tiene como destino el Mercado Interno, dentro de esta modalidad.

Analizando lo anteriormente expuesto, contestar:

  1. ¿Cuáles son las características que se desean mejorar en el ganado vacuno destinado a consumo?
  2. ¿Por qué es posible mejorar esta característica en el ganado?
  3. ¿Cuál es el método tradicional para medir terneza? ¿qué aportan los marcadores moleculares en ésta área?
  4. ¿Cuáles son los marcadores moleculares ligados a la cualidad de terneza de la carne? ¿Qué rol juegan estas enzimas en el proceso de tiernización de la carne?
  5. ¿Qué beneficio trae el conocimiento de estos genes al mejoramiento de esta raza vacuna?
  6. ¿Cuál es el número de alelos favorables [+] considerando que son 4 los marcadores moleculares disponibles para los genes de terneza?
  7. Dado que la capacidad de predecir terneza de los cuatro marcadores es aditiva, a mayor cantidad de las variantes más favorables, mayor probabilidad de obtener individuos con carne tierna. Indique una metodología que pueda emplearse en la detección del número de alelos favorables para la selección de reproductores por terneza.

Bibliografía: Adaptado de:

Guitou, Horacio (2010). Marcadores Moleculares de Terneza: CALPAÍNA Y CALPASTATINA. Una nueva herramienta para el mejoramiento genético de los rodeos bovinos de carne. Revista AnGus 249. Pág. 73-77.

ACTIVIDAD RESUELTA

¿Cuáles son las características que se desean mejorar en el ganado vacuno destinado a consumo?

Para poder contestar esta pregunta, se sugiere buscar información bibliográfica. Ejemplo, del Instituto de Promoción de la Carne Vacuna Argentina (IPCVA).

Los productores desean seleccionar a los mejores animales para lograr una mayor área de ojo de bife, menor cantidad de grasa dorsal o menor porcentaje de grasa intramuscular. A estas características de interés para los consumidores, se sumó la terneza de la carne. La terneza de la carne se define, como la dificultad o la facilidad con la que una carne se puede cortar o masticar.

¿Por qué es posible mejorar esta característica en el ganado?

El mejoramiento es posible porque esta característica se encuentra gobernada por ciertos genes, con lo cual la terneza es un carácter heredable, sensible al mejoramiento.

Además, estos genes se heredan en forma mendeliana, y la descripción del genotipo para estos genes de terneza ya se está incluyendo en el Resumen de Padres ANGUS (Catálogos).

¿Cuál es el método tradicional para medir terneza? ¿qué aportan los marcadores moleculares en ésta área?

El método de “Warner-Bratzler” es el tradicional para medir la terneza de la carne y consiste en cortar la carne con una guillotina al momento de la faena y medir la fuerza de corte en kilogramos. Debido a que este método es poco práctico en estudios genéticos en donde se deben medir los caracteres en los progenitores y la progenie, la utilización de los marcadores moleculares permite ganar en tiempo y en costo y evita la faena de ejemplares.

¿Cuáles son los marcadores moleculares ligados a la cualidad de terneza de la carne? ¿Qué rol juegan estas enzimas en el proceso de tiernización de la carne?

Los marcadores moleculares son las distintas variantes alélicas de los genes que codifican para las enzimas Calpaína y Calpastatina. Las diferencias en los alelos se deben a mutaciones puntuales (SNPs o Single Nucleotide Polymorfhism).

Trabajos científicos de los últimos años han demostrado que el “tiernizado” “post mortem” de las carnes se debe a la existencia de dos enzimas, Calpaína y Calpastatina que actuando en forma coordinada degradan las fibras musculares quitándoles el “rigor mortis” luego de la faena. La Calpaína es la enzima principal de estos procesos de maduración y las variantes más activas de la enzima confieren mayor terneza a la carne. La Calpastatina codifica para una fosforilaza, enzima inhibidora de la calpaína, según el estado alélico en que se encuentre. En forma inversa a la anterior, en este caso las variantes menos activas de esta enzima confieren mayor terneza.

¿Qué beneficio trae el conocimiento de estos genes al mejoramiento las raza vacunas?

La identificación en las diferentes razas bovinas de mutaciones puntuales (SNPs o Single Nucleotide Polymorfhism) asociadas a variantes genéticas de mayor o menor terneza en los genes de CALPAÍNA y CALPASTATINA, ha sido el puntapié inicial para el mejoramiento genético de los rodeos en lo que respecta a la terneza de su carne. Los animales que poseen las variantes más favorables de cada gen tienen más probabilidades de generar carne tierna que los que poseen las variantes menos favorables.

¿Cuál es el número de alelos favorables [+] considerando que son 4 los marcadores moleculares disponibles para los genes de terneza?

El componente genético de la terneza se explica con la presencia de 4 mutaciones, 2 en el gen de Calpastatina (Calpastatina 2959 y Calpastatina UoG) y 2 en el gen de Calpaína (Calpaína 316 y Calpaína 4751).

Un individuo como máximo puede presentar las 8 variantes favorables (individuo diploide).

Entre los individuos con los genotipos más y menos favorables (8 genes favorables vs 0 genes favorables), existe una diferencia en la terneza de más de 1,4 Kg (30%) medida con el método de Resistencia al Corte de Warner – Bratzler a los 14 días post faena. Las VARIANTES MÁS FAVORABLES de un gen o marcador se designan [+] y las MENOS FAVORABLES [-], los bovinos poseen una copia de cada gen provenientes del padre y otra de la madre, el genotipo óptimo de cada gen o marcador es [++], el genotipo intermedio es [+ -] y el genotipo menos favorable es [- -]. Un GENOTIPO [++] significa que el animal que lo posee es homocigota para la variante de mayor terneza para los dos genes y por lo tanto es un individuo con un 100% de capacidad para transmitir dichas características genéticas a su descendencia.

Dado que la capacidad de predecir terneza de los cuatro marcadores es aditiva, a mayor cantidad de las variantes más favorables, mayor probabilidad de obtener individuos con carne tierna. Indique una metodología que pueda emplearse en la detección del número de alelos favorables para la selección de reproductores por terneza.

Para la detección e identificación de las variantes alélicas de los genes que codifican para calpaína y calpastatina, respectivamente, se puede diseñar una metodología que abarque la amplificación por PCR de ambos genes, y una digestión con enzimas de restricción que permita discriminar que variante alélica está presente, siempre y cuando las mutaciones coincidan con sitios de reconocimiento de enzimas de restricción conocidas, creando un sitio nuevo, y/o eliminando otro existente. Por ejemplo, para el gen de la calpaína, la mutación en la posición 316 corresponde al cambio de una base en el ADN (citosina por guanina), que produce un cambio en la estructura de la proteína al reemplazar el aminoácido alanina (GCC) por glicina (GGC).  Alternativamente, se puede mandar a secuenciar el fragmento amplificado.

Enfermedades raras y epigenética

La epigenética desde hace uno años, ha sido objeto de profunda investigación. Son cambios en la regulación de la expresión de los genes, que se dan por modificaciones químicas del ADN (por ejemplo : metilaciones). Algunas enfermedades raras son de las estudiadas. Les dejo un video del Prof. Manel Esteller. Director del Programa de Epigenética y Biología del Cáncer del Instituto de Investigación Biomédica de Bellvitge (IDIBELL)

vimeo 220757609 w=640 h=360

Fuente: Una de cada cuatro enfermedades minoritarias presenta alteraciones de un gen epigenético.

Para saber más y leer sobre este tema: la entrevista completa aquí

Actividad de aprendizaje de Marcadores Moleculares: Detección de un defecto genético en bovinos mediante pruebas de ADN

Introducción: El conocimiento del genoma bovino y la utilización de marcadores de ADN han permitido conocer el origen de algunas enfermedades hereditarias y desarrollar técnicas de diagnóstico precoz. Mediante el aislamiento de ADN a partir de muestras nucleadas y técnicas de amplificación in vitro y digestión con enzimas de restricción se puede diagnosticar si un animal es portador de un gen letal o mutante para determinadas características. En la actualidad es posible estudiar enfermedades hereditarias del ganado bovino lechero como la deficiencia de adhesión leucocitaria bovina (BLAD).

La deficiencia en la capacidad de unión de leucocitos bovinos a los antígenos, más conocida como BLAD (Bovine Leuckocyte Adhesion Deficiency), es causante de la muerte de animales de la raza Holstein a los pocos meses de nacer (de 2 a 8 meses) debido a una susceptibilidad aumentada a la acción de agentes infecciosos. Su principal característica es ser una enfermedad autosómica recesiva que puede ser transmitida a la descendencia.

Se conoce la secuencia del gen normal que codifica para la subunidad β de las integrinas de la proteína bovina CD18 y se ha identificado el alelo bovino CD18 defectuoso.

La amplificación del ADN mediante reacción en cadena de polimerasa (PCR) específica para dicho locus, y posterior digestión del fragmento amplificado (101 bp) en forma separada con las enzimas de restricción Taq I y Hae III, permite visualizar en gel de agarosa al 4% los fragmentos de restricción.

En base al esquema de la Fig. 1, completar el cuadro 1 con el tamaño de los fragmentos de restricción esperados para muestras obtenidas de animales sanos (TL), portadores (BL) y enfermos (BLAD).

Patron de restricción alelos BLAD.jpg

        Figura 1. ADN amplificado y efecto de la digestión con enzimas de restricción

 

Cuadro 1. Patrón de las bandas de los fragmentos de restricción (pb) posterior a la digestión con enzimas Taq I y Hae III.

Tabla para completar ejercicio 1.jpg

 

ACTIVIDAD RESUELTA

La amplificación por PCR tanto del gen CD18 normal y su alelo defectuoso resulta en un fragmento de 101 pares de bases (pb). Sabemos, además, que hay tres genotipos/fenotipos posibles:

  • TL/TL= homocigota (Normal);
  • TL/BL= Heterocigoto (Normal, portador); 
  • BL/BL= Homocigoto (enfermo)

Fig 1 Resoluc.jpg

esquema de restriccion

Por lo que sí, posterior a la amplificación, el producto de 101 pares de bases se somete a digestión con Hae III, el alelo BL se corta en 3 fragmentos: 46, 19 y 36 pares de bases. En cambio, el alelo normal, TL, solo se corta en 2 fragmentos: 65 y 36 pares de bases.

Imagen1

Por lo que sí, posterior a la amplificación, el producto de 101 pares de bases se somete a digestión con Taq I, el alelo BL se corta en 2 fragmentos: 84 y 17 pares de bases. En cambio, el alelo normal, TL, solo se corta en 3 fragmentos: 52, 32 y 17 pares de bases.

En base al análisis previo de cómo se fragmentan cada uno de los alelos con ambos tipos de enzimas, podemos completar el Cuadro 1.

Cuadro 1. Patrón de las bandas de los fragmentos de restricción (en pares de bases) posterior a la digestión con enzimas Taq I y Hae III.

cuadro 1 resuelto.jpg

Recordar que las bandas migran en el gel de agarosa en función de su peso: Las de mayor pesa se ubican en la parte superior del gel, o lo que es lo mismo, más próximos al pocillo de siembra. Recordar sembrar un marcador de Peso Molecular que permita identificar el tamaño de las bandas.

Como ejemplo, se explica en detalle como completar las columnas 2, 3 y 4, en la que se usa Taq I.

  • Un individuo homocigota normal, es decir, genotipo TL/TL: de cada alelo se amplifica idéntica secuencia, por poseer copias idénticas del gen, por lo que la digestión del ADN dará solamente las bandas de tamaño: 52, 32 y 17 pares de bases.
  • Un heterocigota portador, es decir, genotipo TL/BL: de cada alelo se amplifica distinta secuencia, por lo que la digestión del ADN dará una mezcla de las bandas obtenidas de la digestión del alelo TL (52, 32 y 17 pares de bases) y del alelo BL (84 y 17 pares de bases), es decir, en total se observarán CUATRO BANDAS: 84, 52, 32 Y 17 pares de bases (el fragmento de 17 pares de bases es común a ambos alelos).
  • Un homocigota Enfermo, es decir, genotipo BL/BL: de cada alelo se amplifica idéntica secuencia, ya que es homocigota, por lo que la digestión del ADN dará solamente las bandas de tamaño: 84 y 17 pares de bases.

Plataforma de intercambio entre científicos “The Hive”

the-hive

Hola a todos, en esta ocasión quería presentarles a todos lo que hacen ciencia o necesiten consejos sobre ciertas técnicas, la aparición de una plataforma llamada The Hive, que según ellos mismos relatan:

“Pablo Acera y Francisco Arias son sus creadores y son dos científicos españoles con experiencia en el campo de la investigación. Tras sus propias vivencias, ambos llegaron a la conclusión de que en algunos momentos de estas mismas investigaciones los resultados no eran los esperados y se veían ralentizados por la falta de dominio de las técnicas empleadas. Para solventar este problema, decidieron crear una plataforma online donde los usuarios están segmentados según las técnicas que dominan y donde la colaboración entre científicos es simple y rápida.

La página funciona como un foro de preguntas y respuestas filtradas por técnicas donde también es posible la comunicación por chat privado. Con este nuevo enfoque, pretendemos fomentar la colaboración entre científicos y, ante todo, hacer que encontrar al profesional adecuado sea lo más fácil posible.”

Así que les presento a The Hive, que es el link donde la encontrarán, pueden incluso usar las redes sociales para identificarse y es muy simple de usar.

En este enlace os dejo el comunicado de prensa oficial con el que presentamos la idea:

Espero les sea útil

Saludos

Gaby

Talasemia. Monografías de alumnos

Hoy quería dejarles la monografía realizada por Mariana de Gregorio acerca de la Talasemia. Espero esto les sirva a todos los que buscan información del tema

Trabajo final de

Genética básica.

TALASEMIA.

Alumna: Mariana De Gregorio Paolasini.

Profesora: Gabriela Iglesias.

Fecha: 3 de Noviembre del año 2015.

Universidad: Nacional de Rio Negro.

Curso:  Genetica básica, Tercer año.

Carrera: Medicina veterinaria

Introducción:

En la sangre encontramos distintos tipos celulares, entre ellos, los eritrocitos, los cuales representan el número más abundantes de células  de la sangre, y que tienen como componente principal la hemoglobina , cuya función es transportar el oxígeno hacia los diferentes tejidos del cuerpo.  Participa en el proceso por el que la sangre lleva los nutrientes necesarios hasta las células del organismo y conduce sus productos de desecho hasta los órganos excretores. También transporta el oxígeno desde los pulmones (o desde las branquias, en los peces), donde la sangre lo capta, hasta los tejidos del cuerpo.

Los eritrocitos son producidos continuamente en la médula ósea de los huesos largos principalmente.  Tienen una forma oval, bicóncava, aplanada, con una depresión en el centro; diseño óptimo para el intercambio de oxígeno con el medio, ya que le otorga flexibilidad para poder atravesar los capilares, donde liberan la carga de oxígeno.

El diámetro de un eritrocito típico es de 6-8 µm.

Los valores considerados normales de eritrocitos en adultos son:
  • Mujeres: 4 – 5 x 106/mL(mililitro) de sangre
  • Hombres: 4,5 – 5,5 x 106/mL(mililitro) de sangre. wikipedia.org,. (2015).

Un  déficit o disminución por debajo del rango de referencia de los eritrocitos  genera un estado patológico  denominado anemia,  cuya  alteración provoca hipoxia tisular. En cambio, un exceso de estos, se denomina policitemia, el aumento de la concentración de eritrocitos (eritrocitosis) es una patología mucho menos común.

Existen  alteraciones en la maduración de los eritrocitos, entre las cuales están la deficiencia de hierro y las anomalías genéticas que conducen a la producción de hemoglobinas anormales.

Entre las patologías que se pueden producir por anomalías genéticas esta la talasemia, trastorno sanguíneo hereditario.

En este trabajo se explicara que es la talasemia, se nombraran sus variedades, haciendo hincapié en una en particular, llamada β-talasemia, dentro de la que encontramos más de 200 tipos de mutaciones, de las que se explicaran las  más frecuentes en nuestro país.

Desarrollo:

En un sujeto normal, los glóbulos rojos tienen una duración de 120 días de vida. Cada día, el cuerpo produce nuevos glóbulos rojos para reemplazar los que han muerto o los que el cuerpo ha perdido.  En la talasemia, los glóbulos rojos se destruyen a una velocidad mayor generando anemia.

La talasemia ¨Es un trastorno sanguíneo que se transmite de padres a hijos (hereditario) en el cual el cuerpo produce una forma anormal de hemoglobina, la proteína en los glóbulos rojos que transporta el oxígeno¨. (Policlinicalacibis.es,. 2015).

Esta hemoglobina está compuesta por cuatro cadenas de polipeptidos, dos cadenas de globina alfa y dos cadenas de globina beta. Por lo que hay dos tipos de talasemia principales – talasemia alfa y talasemia beta – cuyo nombre viene de los defectos que pueden ocurrir en estas cadenas de proteínas.

Hay dos copias del gen que produce la hemoglobina α (HBA1 y HBA2), y cada uno codifica una cadena α, y ambos genes están localizados en el cromosoma16. El gen que codifica las cadenas β (HBB) está localizado en el cromosoma 11.  (Es.wikipedia.org,. 2015).

Lo que genera las siguientes patologías:

  1. Alfa talasemia:cuando el cuerpo tiene dificultades produciendo alfa globina
  2. Beta talasemia:cuando el cuerpo tiene dificultades produciendo beta globina

En la α-talasemia, el gen HBA1  y HBA2, del cromosoma 16,  hay una deficiencia de síntesis de cadenas α. El resultado es un exceso de cadenas β que trasportan deficientemente el oxígeno, lo que conduce a bajas concentraciones de O2 (hipoxemia).

Paralelamente, en la β-talasemia  hay una falta de cadenas β, y el consiguiente exceso de cadenas alfa, que puede formar agregados insolubles que se adhieren a la membrana de los eritrocitos, pudiendo causar la muerte de éstos y sus precursores, originando anemia de tipo hemolítico.

Estas compensaciones  dan lugar a la formación de hemoglobinas inestables que provocan la destrucción de los glóbulos rojos y por lo tanto anemia. (Es.wikipedia.org,. 2015).

La talasemia se transmite de manera autosómica recesiva, afectando a los varones y mujeres igualmente, pues no implica el cromosoma de sexo  y se da cuando existe un defecto en un gen que ayuda a controlar la síntesis de una de las proteínas globulina  alfa o globulina beta  que componen la hemoglobina.

Como se explico anteriormente, hay diversas formas de talasemia y cada tipo tiene muchos subtipos diferentes. Tanto la talasemia α como la talasemia β,  abarcan las siguientes dos formas, dependiendo la severidad de los síntomas:

  1. Talasemia menor.
  2. Talasemia mayor.

La talasemia menor se presenta  si uno recibe  el gen defectuoso  de solo uno de los padres. Las personas con esta forma de trastorno  son portadoras de la enfermedad y por lo general no tienen síntomas. En cambio, es necesario heredar el gen defectuoso de ambos padres para padecer la talasemia mayor.

Esta enfermedad está provocada por deleciones en uno o varios genes de los que componen los grupos de la α-globina y la β-globina. Según la cantidad de deleciones,  el tipo de talasemia será más o menos grave.

Existen otras deleciones  como resultado de entrecruzamientos desequilibrados entre los segmentos duplicados presentes en la región de la agrupación. (Es.wikipedia.org,. 2015).

Entrecruzamiento_desequilibrado (1)
Imagen de entrecruzamiento desequilibrado. Upload.wikimedia.org,. (2015)

Talasemia alfa:

La talasemia alfa ocurre cuando un gen, o los dos genes relacionados con la proteína globina α  de la hemoglobina faltan o se han modificado, mutado.  La alfa globina se genera en el cromosoma 16, por lo tanto, si los dos genes que le indican al cromosoma 16 que produzca alfa globina no se encuentran o han mutado, se produce menos alfa globina. Esto afecta la hemoglobina y disminuye la capacidad de los glóbulos rojos de transportar oxígeno por el cuerpo.

“Se necesitan cuatro genes, dos de cada padre, para hacer cadenas de proteína alfa. Cuando faltan uno o más de los genes, se produce la talasemia alfa. Este gráfico describe los diferentes tipos de talasemia.”

Genes alfa que faltanProblemaSíntomas de anemiaOtros nombres
1Portador silenciosoNingunoTalasemia alfa – 2 rasgos, talasemia alfa mínima
2RasgosLeveTalasemia alfa – 1 rasgo, talasemia alfa menor
3Hemoglobina HModeradosEnfermedad de la hemoglobina H
4SeriaMortalHidropesía fetal con la Hemoglobina de Bart

Clinica de Cleaveland consultado en 2015.

De Anjile – Trabajo propio, CC BY-SA 4.0,
  • Portador silencioso de alfa talasemia: un alelo del gen de la cadena alfa está delecionado (los otros tres son normales).  Genotipo  -/α α/α
  • Portador de alfa talasemia:perdida de dos alelos α, de los genes de cadena alfa, cualquiera ambos del mismo cromosoma 16, llamaron una canceladura de los “cis” o uno de ambos cromosomas 16, llamado una canceladura “trans.” Genotipo: -/- α/α or -/α -/α.
  • Enfermedad de la hemoglobina H: perdida de tres alelos α de los dos  genes de la cadena alfa están delecionados. La enfermedad de la hemoglobina H, produce una anemia. Las personas que tienen la enfermedad de la hemoglobina H corren un mayor riesgo de tener un hijo con alfa talasemia grave, puesto que son portadores de un cromosoma número 16 con dos genes delecionados de la cadena alfa (deleción en cis). Genotipo: -/- -/α
  • Alfa talasemia grave:pérdida de los cuatro alelos α, de ambos  genes de la cadena alfa, lo que es tan grave que puede producirse la muerte dentro del útero (antes del nacimiento). Genotipo: -/- -/-

Saludos

Gaby

Todos los casos posibles de talasemia alfa, según la ausencia de uno, dos, tres o cuatro genes de la alfa globina. Es.wikipedia.org,. (2015).

Ventajas de la talasemia α:

La α-talasemia protege a los individuos que la portan frente a la malaria. La malaria o paludismo está producida por un parásito protista del género Plasmodium y es transmitida por un mosquito del género Anopheles. La protección frente a esta enfermedad por parte de los individuos que posee α-talasemia es debida a que Plasmodium sólo es capaz de parasitar a los eritrocitos sanos. Sin embargo, la sangre de alguien con este tipo de anemia presenta un número elevado de eritrocitos deformes por culpa de que la hemoglobina no está bien constituida y eso es esencial pues deja al parásito indefenso en la sangre permitiendo que nuestro sistema inmunitario acabe con él.

Talasemia Beta

Normalmente hay dos genes de globina beta, uno heredado  de cada padre. La talasemia beta es un cambio en uno o los dos genes de globina beta, localiza en el cromosoma 11. Las mutaciones pueden suprimir completamente (mutaciones β0) o disminuir (mutaciones β+ y β++) la producción de cadenas β globina, lo que resulta en un desequilibrio en la síntesis de cadenas de globina α/β.

La magnitud de este, es la determinante principal del fenotipo de la enfermedad, que abarca desde los individuos asintomáticos (β-Talasemia  menor o portador) que agrupa a los genotipos heterocigotos (β+/P o β0/P) y que corresponde a la forma más frecuente en nuestro país,  hasta los que dependen de transfusiones regulares para vivir (β talasemia mayor) que comprende a los genotipos homocigotos (β00 y β++) o dobles heterocigotos (β0+), y corresponde a las formas de mayor expresividad clínica.

Entre ambos extremos, se encuentran los pacientes con β talasemia intermedia (BTI), en los cuales las manifestaciones clínicas son variables.

Este gráfico describe los diferentes tipos de talasemia beta.

Genes beta afectadosProblemaSíntomas de anemiaOtros nombres
1Portador silenciosoLeve
1RasgoLeve
2IntermediaModerado
2MayorSeveroAnemia de Cooley

Clinica de Cleaveland consultado en 2015.

También existen casos de deleciones de diversos tamaños que pueden afectar al gen de la beta globina o a la región de control del locus.

Mayoritariamente es una enfermedad hereditaria con un patrón autosómico recesivo, pero también existen algunos casos donde la herencia es autosómica dominante.

También existen dos variedades de beta-talasemia (mayor o menor) según sea un déficit total o parcial de la síntesis (dependiendo la severidad de los síntomas): la talasemia mayor (también conocida como anemia de Cooley o anemia del mediterráneo) que es más severa y la talasemia intermedia.

Beta talasemia grave o MAYOR u homocigota (anemia de Cooley): los dos genes de la cadena beta tienen deleciones, causando el tipo más grave de beta talasemia. Los pacientes que tienen talasemia grave pueden fabricar suficientes glóbulos rojos  por lo que necesitan frecuentes transfusiones de sangre y puede que no vivan mucho tiempo. Durante el primer año o dos primeros años de vida, pueden estar pálidos, irritables, tener poco apetito y padecer muchas infecciones. Sin tratamiento, aumenta el tamaño del hígado, del bazo y del corazón, y los huesos pueden volverse delgados y quebradizos, desarrollan hemosiderosis (depósito en todos los tejidos del hierro liberado tras la hemólisis). Es frecuente la presencia de cálculos biliares por la hemólisis crónica. Adquieren un color pardo-verdoso por la anemia, la ictericia (la hemólisis libera bilirrubina que produce un color amarillo en la piel y mucosas) y la hemosiderosis. Se detiene el crecimiento, se retrasa la pubertad. Y finalmente se produce un fallo cardíaco.

Actualmente algunos pacientes pueden también ser tratados, e incluso curados, mediante un transplante de médula ósea.

Beta talasemia leve o característica de talasemia – un gen beta tiene una deleción, provocando anemia. La talasemia leve se divide en:

1.-Talasemia mínima  (la persona tiene pocos o ningún síntoma).

2.-Talasemia intermedia  (la persona tiene una anemia de moderada a grave).

-Beta Talasemia Intermedia: Se designa así al síndrome talasémico de moderada intensidad, que condiciona la aparición de una anemia leve y alteraciones óseas. Presentan sintomatología clínica y requieren transfusiones de sangre durante alguna época de su vida, pueden desarrollar hemosiderosis. Sus manifestaciones no son tan graves como en los pacientes afectados de la forma mayor de la enfermedad.

-Beta talasemia heterocigota o menor (rasgo talasemico): aparece cuando sólo está afectada una de las copias del gen que codifica la cadena. Es la mutación del gen beta, caracterizada por unos hematíes elevada, con concentración de hemoglobina normal o disminuida y generalmente presenta un aumento de la Hb A2. Las personas portadoras de talasemia menor, no presentan manifestaciones clínicas, aunque en ocasiones pueden tener una ligera anemia que se pone de manifiesto al realizar un análisis. Los glóbulos rojos de los portadores del rasgo talasémico son más pequeños de lo normal. La talasemia menor está presente desde el nacimiento, permanece durante toda la vida y puede transmitirse de los padres a los hijos.

Las β-talasemias además de la deleción del gen de la β-globina, también pueden darse por otras causas como:

  • Mutaciones en el promotor que detienen o reducen su transcripción.
  • Mutaciones en los sitios de corte y empalme (splicing) que impiden la eliminación de losintrones.
  • Mutaciones en el sitio aceptor de poli-A que afectan al procesamiento del mesnajero ó mRNA.
  • Mutaciones de cambio en la pauta de lectura.

Es.wikipedia.org,. (2015).

O también pueden presentarse otras formas de talasemia beta cuando se hereda un gen para la beta talasemia en combinación con un gen de una variante hemoglobínica. Las más importantes son:

  • HbE: Si se hereda un gen de la HbE y uno de la beta talasemia, esta combinación es la responsable de la HbE-beta talasemia, apareciendo una anemia de moderada a severa similar a la beta talasemia intermedia.
  • HbS: beta talasemiaanemia falciforme. Si se hereda un gen de la HbS y otro de la beta talasemia, aparece la HbS-beta talasemia. es,. (2015).

Diagnostico para un paciente talasemico:

El diagnostico se puede realizar  con una única muestra de sangre, realizando:

  • Cuadro Hemático Completo (CBC), que incluye la medición de la hemoglobina y la cantidad/ tamaño de células rojas. La gente que sufre de talasemia tiene menos cantidad de células rojas sanas, menos hemoglobina de lo normal y dichos eritrocitos serán más pequeños e irregulares. (hemograma completo).
  • Un recuento de reticulocitos (medición de células rojas jóvenes) puede indicar que tu médula espinal no está produciendo el número adecuado de células rojas.
  • Los estudios del hierro indicarán si la causa de la anemia es una deficiencia de hierro (anemia ferropenica) o talasemia.
  • Se pueden usar pruebas genéticas o análisis mutacional para diagnosticar cuando hay un historial familiar de talasemia.
  • Electroforesis de la hemoglobina: es unprocedimiento de laboratorio que diferencia los tipos de hemoglobina presentes.
  • El médico lleva a cabo un examen físico para buscar un bazo inflamado (agrandado).

DIAGNOSTICO MOLECULAR- PCR:

El PCR es un método sencillo para el clonaje in vitro de cualquier segmento de ADN permitiendo disponer de forma rápida, eficaz y económica, de cantidades suficientes del mismo para su  posterior estudio molecular. Mediante esta  técnica, se realiza  la detección de los genotipos causantes de β-talasemia, ya que permiten discriminar entre alelos normales y mutantes que difieren en una sola base.

El método Amplificación Refractaria de Sistemas de Mutaciones (ARMS-PCR) es una modificación de la técnica de PCR,  utilizada para la detección de mutaciones puntuales causantes de β-talasemia. Esta técnica permite la amplificación enzimática de alelos específicos, mediante el uso de cebadores que están diseñados para discriminar entre secuencias que difieren en una única base. Además, utiliza cebadores control que amplifican otra región del gen de β globina, cercana a la mutación que será detectada, actuando como control interno de amplificación asegurando la eficiencia de la PCR y evitando falsos negativos.

Este es un método basado en la reacción en cadena de la polimerasa, capaz de detectar diversas mutaciones puntuales y pequeñas deleciones o inserciones en el gen β globina, con el empleo de oligonucleótidos de secuencia específica.

Los productos obtenidos en la amplificación (PCR)  pueden analizarse mediante diversas técnicas:

  • Dot blot: se utiliza para detección de mutaciones puntuales mediante muestras de ADN hibridadas con sondas marcadas radiactivamente específicas de ciertas regiones del ADN de estudio. Solamente las muestras portadoras de la región de interés se revelan (puntos oscuros).

 

  • Análisis con enzimas de restricción: Las enzimas de restricción o endonucleasas, son enzimas que cortan los enlaces fosfodiester del material genético a partir de una secuencia que reconocen. Las mismas permiten cortar DNA de hebra doble, donde reconocen secuencias palindrómicas (secuencias que se leen igual en ambas direcciones).
  • Secuenciación directa del ADN amplificado: determinación del orden de los nucleótidos (ACG y T) en un oligonucleótido de ADN

 

Las mutaciones más frecuentes en la población argentina del gen de β-globina son CD39 e IVS1-110, las cuales se dan a conocer mediante la técnica de ARMS-PCR.

  • IVS-I-110 (G>A)
  • CD 39 (C>T),

 

El diagnóstico molecular de β-talasemia, puede ser útil para brindar el asesoramiento genético entre parejas portadoras. La técnica de ARMS-PCR, reúne los requisitos necesarios de los métodos de diagnóstico: alta especificidad, reproducibilidad y bajo costo. Por lo tanto constituye un método eficaz para el diagnóstico de β-talasemia en pacientes sin posibilidad de estudio familiar, debido a la falta de uno de los padres.

Esta técnica no sólo permite detectar la mutación causante del padecimiento, sino también determinar si se encuentran en estado homocigoto o heterocigoto.

Los pacientes portadores de éstas (hetrerocigotos β/ βCD39 y β/βIVS1-110) y otras mutaciones β-talasémicas, son generalmente (salvo complicaciones) asintomáticos. Sin embargo, en estado homocigótico producen cuadros clínicos de mayor gravedad (Anemia de Cooley). De aquí la importancia de detectar a los individuos portadores, y en especial, aquellas parejas con probabilidades de concebir hijos con talasemia mayor, teniendo en cuenta las complicaciones que conlleva la herencia de dicha condición.  (Qbpatologica.files.wordpress.com,. 2015).

Tratamiento:

Los tratamientos estándar para los pacientes con talasemias serias son las transfusiones de sangre, quelación de hierro, extirpación del bazo, dosis diarias de ácido fólico, posible extirpación quirúrgica de la vesícula biliar, y trasplante de médula.

  • Las transfusiones de sangre cada 4 meses en los pacientes con talasemias moderadas o severas, y cada 2 a 4 semanas para los pacientes con talasemia seria beta. Se pueden necesitar transfusiones ocasionales para la enfermedad de la hemoglobina H o la talasemia intermedia beta.
  • La quelación del hierro: extirpación del exceso de hierro del cuerpo. Uno de los riesgos de las transfusiones de sangre es que pueden causar una sobrecarga de hierro, que a su vez puede causar enfermedades del corazón.
  • Esplenectomía(extirpación del bazo)
  • El trasplante de la médula espinal
  • Terapia génica: para lograr que un gen normal se inserte en un genoma del individuo con dicha enfermedad hereditaria.

Factores de riesgo:

  • Etnicidad afroamericana, asiática, china o mediterránea.
  • Antecedentes familiares del trastorno.

Incidencia

Las talasemias alfa ocurren con mayor frecuencia en personas del sudeste asiático, Medio Oriente, China y en aquellas de ascendencia africana. Las talasemias beta ocurren en personas de origen mediterráneo, y en menor grado, los chinos, otros asiáticos y afroamericanos.

Conclusión:

Luego de llevar a cabo la presente monografía,  se pude considerar que la talasemia es una enfermedad muy distribuida por el mundo, muy poco conocida por la población, aunque con una gran incidencia.

Estando al tanto de la gran distribución mundial de esta enfermedad, y la gran variedad de formas en las que se puede presentar,  es importante dar a conocer la misma, y que sean detectados y alertados por sus médicos aquellos individuos portadores,  en especial, aquellas parejas con probabilidades de concebir hijos con talasemia mayor, teniendo en cuenta las complicaciones que conlleva la herencia de dicha condición.

Bibliografía:

·   Bragos, M. (2015). Diagnostico molecular: aplicaciones en hemoglobina.. [online] Available at:  [Accessed 15 Nov. 2015].

  • Brandon, N., Aguirre, M. and Gimenez, C. (2015).HEMOGLOBINA. [online] Available at: [Accessed 15 Nov. 2015].

·   Clevelandclinic.org,. (2015). Las Talasemias. Retrieved 14 November 2015, from

·   Es.wikipedia.org,. (2015). Eritrocito. Retrieved 15 November 2015, from

  • wikipedia.org,. (2015).Talasemia. Retrieved 15 November 2015, from

·   Exactas-unam.dyndns.org,. (2015). Retrieved 16 November 2015, from

·   Fundatal.files.wordpress.com,. (2015). Retrieved 15 November 2015, from

Google.com.ar,. (2015). Resultado de imágenes de Google para

·   Qbpatologica.files.wordpress.com,. (2015). Retrieved 15 November 2015, from

·   Scielo.org.ar,. (2015). Retrieved 15 November 2015, from