Parálisis Periódica Hiperkalémica (HYPP) en equinos. Monografías de alumnos

En esta ocasión les dejo la monografìa realizada por la alumna Betiana Tscherig acerca de la  Parálisis Periódica Hiperkalémica (HYPP) en equinos y su forma de diagnóstico por técnicas de biología molecuar. Espero les sirva a todos aquellos en el camino de aprender y los interesados en aprender sobre el tema

Saludos

Gaby

Tscherig. Imagen 2

Escuela de Medicina Veterinaria y Producción agroindustrial.

Parálisis Periódica Hipercalémica (HYPP) en Equinos.

Curso de Genética básica a cargo de Iglesias, Gabriela, año 2015.

Alumna Tscherig Betiana.

 

Parálisis periódica hipercalémica (HYPP) en equinos.

 

Con la presente monografía se darán a conocer con detalles, aspectos propios de la Parálisis Periódica Hipercalémica (HYPP) haciendo especial hincapié en el área genética. Se trata de una enfermedad genética de tipo autosómica dominante presente en los equinos que básicamente afecta los canales de sodio en las células del músculo y la capacidad para regular los niveles de potasio en la sangre.

Esta enfermedad presenta una amplia variedad de síntomas clínicos y se generalizó cuando los criadores trataron de producir caballos con musculatura pesada. Hipótesis que posteriormente se descartó.

Se debe tener presente que dicha afección no solo se produce en equinos sino que también lo hace en los seres humanos, en los cuales se denomina Gamstorp adynamy episódica.

Características propias de la Parálisis Periódica Hipercalémica.

 

Herencia.

La Parálisis Periódica Hipercalémica es una enfermedad muscular que se presenta en los descendientes del semental  Cuarto de Milla “Impressive” (AQHA 767246), oriundo Oklahoma, Estados Unidos. El semen de este equino fue seleccionado y utilizado de manera intensa gracias a las cualidades de conformación de dicho semental, desconociendo aún la mutación. Tal es así que a partir del año 2003 se registraron más de 55.000 equinos vivos relacionados en su genealogía con Imprenssive (según registros de la AQHA), pero se sabe que contribuyó a la composición genética de 2.9 millones de caballos registrados (Rudolph et al., 1992).

En la actualidad se dice que la Parálisis Periódica Hipercalémia equina se presenta en 1 de cada 50 caballos cuarto de milla. También se ha reportado su presencia en varias líneas de caballos tales como Apaloosa y Pintos (Church 1995, Rudolph et a/, 1992).

En 1996, el Dr. Naylor sugirió como hipótesis que las anomalías en la transmisión del potencial de membrana de los caballos HYPP-positivo podrían conducir a la hipertrofia muscular característica en esta línea. Doctores expertos de la Universidad de California Davis y de la Universidad de Valberg, Minnesota, llevaron a cabo los análisis musculares para apoyar o refutar esta hipótesis mediante biopsias del músculo glúteo pero no encontraron ninguna diferencia en cuanto al porcentaje de contracción, edades o tamaño de las fibras y ninguna asociación con la gravedad clínica. Por lo tanto, su investigación descartó la hipótesis del Dr. Naylor.

 

Características genéticas.

La parálisis periódica hipercaliémica (HYPP) es una enfermedad genética de herencia autosómica dominante, es decir que es requerida una sola copia del gen (alelo) para que se presente la enfermedad.

Durante un estudio genético llevado a cabo en Stichting Klinisch Genetisch Centrum de Leiden (Holanda) en humanos se determinó que la enfermedad está causada por mutaciones en el gen SCN4A, que codifica la subunidad alfa (α) del canal de sodio muscular o canal de tipo IV. Se trata de una proteína transmembrana de 1.836 aminoácidos que, junto a la subunidad beta (β) del canal, media la permeabilidad de las membranas musculares excitables a los iones de sodio. El canal adopta conformaciones abiertas o cerradas en función de las diferencias de voltaje y el sodio pasa a través del poro de acuerdo con su gradiente electroquímico. El gen, que tiene 24 exones y se localiza en el cromosoma 17q23.3, fue identificado como la causa de la enfermedad mediante cartografía genética y análisis mutacional. (B. Narberhaus; 2008)

Normalmente para evitar que el músculo se contraiga continuamente, el canal de sodio se cierra mediante su compuerta de inactivación rápidamente después de que se abra y tome contacto con el ion. Con el tiempo, los iones de potasio salen de las células musculares, repolarizando así a las células y provocando el bombeo de calcio fuera del aparato contráctil para relajar el músculo. (Ganong, 2010)

Mediante el estudio génico de Narberhaus y otros investigadores, se determinó además que se presenta un cambio en heterocigosis, una transición nucleotídica de Citocina a Timina en el exón 13 del gen, que resulta en una sustitución aminoacídica de treonina (Thr) a metionina (Met) en el residuo 704 de la proteína (c.2111C>T, p.Thr704Met).

En cambio, en el equino esta mutación de punto consiste en una sustitución de Citosina a Guanina en el gen que codifica el dominio transmembranal de la sub-unidad alfa del canal de sodio muscular. El intercambio de citosina por guanina de la proteína SCN4A resulta en la sustitución de un residuo fenilalanina por leucina el cual es más pequeño que el residuo de la fenilalanina, resultando fisiológicamente o electroquímicamente en la fuga del ion sodio, a través del poro de la membrana celular que debería permanecer cerrado cuando no está bajo estimulación nerviosa (que generaría una contracción muscular) (Reynolds, 1997). La mutación en esta especie fue aislada en 1994 por investigadores de la Universidad de Pittsburgh, con una subvención de diversas organizaciones de equinos; los mismos desarrollaron un análisis de sangre el cual es utilizado actualmente para la identificación de los individuos afectados.

Las mutaciones, alteran la estructura normal y la función del canal de sodio e interrumpen de este modo la regulación de la contracción muscular, originando así cierta susceptibilidad a los episodios de parálisis del mismo.

“La sustitución aminoacídica impide la inactivación del canal que sigue normalmente a un potencial de acción, dando lugar a un flujo incontrolado de sodio hacia el interior de la fibra muscular. Como consecuencia, la fibra se despolariza activando la entrada de calcio desde el retículo sarcoplasmatico para causar la contracción del músculo, impidiendo la generación de nuevos potenciales de acción. La entrada masiva de sodio dentro de las células provoca una salida de potasio que explica los niveles aumentados de este catión en sangre que son característicos de la enfermedad.” (B. Narberhaus; 2008)

El fallo de los canales de sodio para inactivar correctamente se ve favorecido frente a  factores como el estrés o cuando los niveles de potasio en la sangre fluctúan. Esto último puede ocurrir con el ayuno seguido por el consumo de un alimento rico en potasio, como la alfalfa. (ucdavis.edu., 2015)

Descendencia.

Desde el año 1998, la AQHA (American Quarter Horse) exige revelar la condición genotípica de la HYPP en los documentos de registro de todos los potros que descienden de alguna línea genética identificada como portadora del gen portador. Si un potro y sus progenitores no han sido analizados para el gen HYPP, los documentos de registro deberán llevar la leyenda: “Este caballo tiene un ancestro conocido como portador del gen HYPP, designado de a cuerdo a las reglas de la AQHA como un defecto genético. La AQHA recomienda realizar el examen respectivo para confirmar la presencia o ausencia de este gen” (Crabbe, 1998).

Según los resultados de los análisis realizados a los equinos para el gen HYPP el documento de registro del animal llevará la designación “N/N”, “N/H” o “H/H”. (Ayala, M., 2005)

Homocigota recesivo: N/N. resulta negativo para la enfermedad, lo cual significa que no es portador del gen HYPP y por ende no lo transmiten, aunque sean descendientes de Impressive.

Heterocigota: N/H. si tiene una copia o alelo del gen el caballo resulta positivo a la mutación. Estos caballos se ven afectados en un grado menor.

Homocigota dominante: H/H. Si tiene dos alelos del gen. Darán lugar a toda la descendencia que lleva el gen defectuoso, independientemente del estado del otro progenitor. El fenotipo se muestra como severamente afectado.

Se concluye con esto que los animales homocigótos para la mutación (H/H) son severamente más afectados que los heterocigótos (N/H) (Beech et al., 1993) y por esto se deben de tener en cuenta las siguientes posibilidades de apareamiento:

  • Un equino (♂ o ♀) heterocigótico para la mutación (N/H), tiene un 50% de probabilidad de transmitir una copia del gen anormal (H) a su descendencia cuando es apareado con un equino normal (N/N) mientras que el otro 50% lleva la mutación (N/H).
  • Un equino (♂ o ♀) heterocigótico para la mutación (N/H), tiene un 75% de probabilidad de procrear un potro con HYPP (50% N/H; 25% H/H), cuando es apareado con otro equino también heterocigótico (N/H)
  • Un equino (♂ o ♀) homocigótico para la mutación (H/H), tiene un 100% de probabilidad de procrear un potro con HYPP (100% N/H), cuando es apareado con un equino normal (N/N). . (Ayala, M., 2005)

De esta forma, sólo cruzando animales sanos (N/N), previamente detectados por diagnóstico molecular de Parálisis Periódica Hipercalémica, podría reducirse la incidencia de la mutación y eventualmente eliminarse (Naylor, et al. 1999, Spier, et al. 1990), a la vez que se conservan los rasgos deseables de la línea del semental Impressive. (Spier, 1993).

Sintomatología.

 

Los síntomas principales de la enfermedad en el animal son la rigidez, tremor (hiperexcitabilidad) o debilidad muscular, prolapso del tercer párpado, relincho anormal (por afección de los músculos de la laringe) y convulsiones en ocasiones acompañadas de parálisis de músculos respiratorios y cardiacos que pueden derivar en la muerte por falla cardiaca o respiratoria (Bowling et al., 1996). Estos síntomas se manifiestan principalmente en la etapa adulta de los animales afectados, pero pueden aparecer algunos de ellos  entre los dos a tres años de edad dependiendo de la influencia que tienen las prácticas de manejo como el transporte y la alimentación que estimulan dicha alteración (dado que puede ser agravada por incremento de potasio o frío). Factores como la edad, el género, y la cantidad de músculo no son importantes para la predicción de síntomas HYPP.

 

La HYPP en ocasiones es confundida con el síndrome de cólico ya que los animales afectados normalmente caen por la debilidad muscular, presentando similar incoordinación de las extremidades y los sonidos respiratorios. Pero a diferencia del cólico, la duración de una convulsión es muy rápida y el caballo está totalmente normal después de la recuperación. (ucdavis.edu, 2010)

El ataque convulsivo se produce cuando el potasio sale de la célula al torrente sanguíneo y la célula se llena de sodio produciendo una alteración en la conducción eléctrica hacia los músculos, esto surge como mecanismo compensatorio fisiológico para tratar de evitar el acumulo excesivo de cargas positivas en el interior de la célula. Los equinos son plenamente conscientes y lúcidos durante un ataque. (ucdavis.edu, 2010)

Así mismo, se han reportado manifestaciones subclínicas de animales afectados. (Citado por Moreno Chapa, J. 2007)

 

Diagnostico de la enfermedad

Una forma de llegar al diagnóstico de la enfermedad es analizando una muestra de sangre conservada en citrato sódico tomada durante uno de los ataques, para confirmar la hipercalemia, ya que en ese momento siempre se manifiesta un repentino incremento en la concentración de potasio en suero (por arriba de 8 a 9 mEq/L). Tal aumento indica que se ha alterado la entrada y salida convencional del electrolito. (Wikipedia, 2014)

El genotipo de los individuos también puede determinarse mediante una Prueba de Reacción en Cadena de  Polimerasa y Polimorfismo de Longitud en Fragmentos de Digestión (PCR-RFLP), que consiste en una amplificación in vitro de un fragmento específico del gen (Ácido DesoxirriboNucléico -ADN) del canal de sodio seguida de una separación electroforética de los productos de PCR digeridos por la enzima de restricción Taq I de los productos amplificados (Rudolph et al., 1992). De esta forma, para distinguir entre un individuo que presenta una mutación y otro que no, se elige la enzima de restricción que reconozca su sitio de corte (en un genotipo u otro), de forma que el corte se efectúe sólo en los individuos de un genotipo determinado. Posteriormente se visualizara este polimorfismo de longitud de fragmento de restricción (RFLP) del ADN amplificado a través de un corrimiento electroforético en gel de agarosa (Rudolph et al. 1992) mostrando en una o dos bandas los productos de PCR digeridos (Griffiths et al 1995, Puertas 1999). Esta técnica muestra una precisión de 99% (citado por Moreno, J. 2007 desde Bowling et al. 1996).

El fragmento del gen donde se da la mutación a través de la amplificación originada por la enzima termoestable Taq polimerasa, proveniente de una bacteria (Thermus aquaticus),  efectúa el proceso de polimerización de una cadena complementaria de ADN, obteniéndose millones de copias del fragmento de interés. (citado por Moreno, J.)

“La enzima de restricción Taq I lo corta si no existe la mutación, originando dos fragmentos, mientras que si la hay sólo se genera un fragmento para encontrar la mutación dentro del gen específico. Esto consiste en una amplificación de un fragmento específico del gen del canal de sodio, el cual es después digerido con una endonucleasa (enzima de restricción Taq l) que lo corta si no existe la mutación, originando dos fragmentos, mientras que si la hay solo se genera un fragmento” (Rudolph et al. 1992).

Los iniciadores a utilizar permiten la amplificación, por la técnica de Reacción en Cadena de la Polimerasa, de la secuencia correspondiente al segmento del gen donde ocurre la mutación, específicamente en la base nitrogenada 2188 de su ADNc. Los iniciadores de PCR son los siguientes (Rudolph et al. 1992):

IVS2F: 5′-GGGGAGTGTGTGCTCAAGATG-3′

IVS3R: 5′-AATGGACAGGATGACAACCAC-3′

La mezcla de reacción se ejecuta mediante el empleo del estuche para PCR Taq & Go para la amplificación.

Para llevar a cabo la verificación del genotipo las bandas observadas por efecto de la digestión de los productos de PCR por la enzima de restricción, deben evidenciar los siguientes genotipos (Rudholp et al. 1992):

  • Normal (homocigoto recesivo, N/N): una banda de 64 pares de bases (pb) y una banda de 28 pb.
  • Afectado (heterocigoto, N/H): una banda de 92 pb, una de 64 pb y una de 28 p.b.
  • Afectado (homocigoto dominante, H/H): una banda de 92 pb. (Figura 6 del anexo)

Tratamiento.

Los equinos afectados pueden ser tratados con  posibilidad de reducir los signos clínicos, pero el grado que ayuda a tratamiento médico varía entre los individuos. No existe una cura.

Algunos, se ven más afectados por la enfermedad que otros y algunos ataques serán más graves que otros, incluso en el mismo individuo.

Para un atraque leve el tratamiento indicado es un poco de ejercicio, ingestión de alimentos ricos en carbohidratos o suplementados con glucosa. Se pueden necesitar diuréticos como la furosemida para detener los ataques. Acetazolamida y diuréticos de tiazida, tales como clorotiazida también son eficaces.

En cambio, el tratamiento para un ataque severo usualmente consiste en la administración intravenosa de reconstituyentes de dextrosa, calcio y sodio. El calcio intravenoso disminuye la actividad de los canales de sodio pudiendo detener los ataques. (Carlos, J., 2015)

La glucosa por vía intravenosa y la insulina estimula la captación de potasio en la célula por la Na-K ATPasa y pueden reducir la debilidad sin una pérdida de potasio corporal total.

 

Se debe considerar también, la implementación de las buenas prácticas en las explotaciones equinas tales como inocuidad de alimento de los equinos; salud e higiene del personal; calidad del agua de bebida de los equinos; programa para el control de fauna nociva; manejo de excretas y uso apropiado de medicamentos veterinarios (después de realizado el diagnóstico) siendo utilizados de acuerdo a las recomendaciones, dosis, tiempos de retiro y caducidad. (Carlos, J., 2015)

A modo de conclusión y síntesis.

En los pacientes con mutaciones en SCN4A, el canal no es capaz de inactivar, la conductancia de sodio es sostenido y el músculo permanece permanentemente tensa. Como la placa de extremo del motor es despolarizadas, más señales al contrato no tienen ningún efecto. La condición es hiperpotasemia debido a una concentración de iones de potasio extracelular alta hará que sea aún más desfavorable para el potasio a salir de la celda con el fin de repolarise que el potencial de reposo, y esto aún más prolonga la conductancia de sodio y mantiene el músculo contraído. Por lo tanto, la gravedad se reduciría si las concentraciones de iones de potasio extracelulares se mantienen bajos.

Ésta mutación no se originó como el producto de endogamia, sino que se empezó a manifestar debido a las cruzas selectivas de buscar animales con mejor musculatura (Moreno, J., 2007). Además, como la HYPP es una enfermedad de herencia dominante puede transmitirse a otras razas de caballos que utilicen Cuarto de Milla en su conformación genética.

Dada la propagación de la enfermedad en el mundo se vuelve más relevante la identificación del genotipo de los equinos para determinar así cuan intensa puede llegar a ser la afección que se presenta con mayor intensidad a los caballos homocigoto dominante (H/H) que los heterocigotos (N/H) y que solamente queda exento de padecerla aquel que posea el gen el homocigoto recesivo (N/N).

 

Anexo

Tscherig. Imagen 1.

 

Tscherig. Imagen 2

 

 

 

 

 

 

 

 

 

 

 

 

Figura 1: Fotografia del semental  Impressive (1969-1995) de raza Cuarto de Milla. Campeón y padre de caballos campeones en conformación.

 

Tscherig. Imagen 3

 

Figura 2: Extraída del artículo Parálisis periódica hipercaliémica: presentación de una familia española con la mutación p.Thr704Met en el gen SCN4A en el cual se muestra el ideograma del cromosoma y un esquema del gen que se presenta de manera similar en los equinos.

 

 

 

Tscherig. Imagen 4

Figura 3: Ejemplo de interpretación de resultados del tratamiento de los productos de PCR con la enzima de restricción Taq I. Se muestra los genotipos homocigoto dominante (normal, NN) en el carril 1, heterocigoto (portador, NH) en el carril 2 y homocigoto recesivo (afectado, HH) en el carril 3. Se utilizó el marcador de peso molecular Hiperladder V para verificar el tamaño de los productos de PCR (Moreno Chapa, J. 2007).

Tscherig. Imagen 5

 

Figura 4. Ejemplo de visualización en el fotodocumentador  Fluor- S Multimager*1 (Bio- Rad) de la purificación de ADN a partir de muestras sanguíneas. Carriles 1 y 10: Marcador de peso molecular; carriles 2 a 8: productos de PCR; Carril 9: control negativo. Puede verse que todas las muestras, excepto la del carril 3,(quizá debido a errores de preparación de la mezcla de reacción para PCR siendo ideal que se repitiera el proceso de amplificación)  mostraron el producto de PCR esperado de 92 p. b. (Moreno Chapa, J . 2007)

 

Tscherig.Imagen 6

 

Figura 5: Ejemplo de visualización de análisis RFLP. Puede verse que la Muestra 1 tiene las bandas de 92 y 64 pb., mientras que la muestra 2 solo tiene la banda de 64 pb. La banda de la muestra 3 es un dímero de iniciador. (Moreno Chapa, J., 2007)

Bibliografía

-Ayala, M. (2005) Prevalencia del gen de la Parálisis Periódica Hipercalémica Equina (HYPP) en Avances en la investigación científica en el CUCBA. Jalisco, México. pp 588-591.

 

– Ayala,-Valldovinos, MA.; Anguiano-Estrella R.; Galindo-García, J.; Sánchez-Chiprés DR.; Duifhuis-Rivera, T. (2002). Prevalencia del gen de la parálisis periódica hipercalémica (hypp) equina y del gen del síndrome overo letal blanco (olws) en caballos importados a México. De http://comvepebc.com/wp-content/uploads/2015/07/Prevalencia-de-los-genes-HYPP-y-OLWS-en-Caballos-Importados-a-M-%C2%AExico.pdf/

                                                         

– Ayala-Valdovinos MA, Villagómez, DAF, Galindo-García J, y Sánchez-Chiprés DR. Diagnóstico molecular (PCR-RFL) de parálisis periódica hipercaliémica equina. XXV Congreso Anual de la Asociación Mexicana de Médicos Veterinarios Especialistas en Equinos, A. C. Octubre 8-11 de 2003:141–144. México.

 

-Carlos, J. (2015). Alcances del Diagnóstico Veterinario: El uso de técnicas moleculares. Lavet. Retrieved 16 November 2015, de

Alcances del Diagnóstico Veterinario: El uso de técnicas moleculares

 

– Barrett, K., (2010). Ganong Fisiología Médica. Edición 23a. México, D.F.Editorial Mcgraw-Hill. Sección II. pp: 93-114.

 

-Moreno Chapa, J.,(2007) Determinación alélica de la mutación causante de la parálisis periódica hipercalémica en caballos cuarto de milla y sus cruzas en el noreste de méxico. Tesis de grado de Maestro en Ciencias veterinarias. México, Universidad autónoma de Nuevo León, Facultad de medicina veterinaria y zootecnia.

– Narberhaus, B; Cormand, B.; Cuenca-León, E; Ribasés, M; Monells J. (2008) Parálisis periódica hipercaliémica: presentación de una familia española con la mutación p.Thr704Met en el gen SCN4A. Neurología. 23(7):427-435

-Naylor, J; Niquel, DD; Trimiño, G.; Lightfoot K; Adams, G. (1999) Hyperkalaemic periodic paralysis in homozygous and heterozygous horses: a co-dominant genetic condition en Equine Veterinary. Volumen 31, número 2, Marzo 1999. pp 153-159.

 

-Pirila R, Lehmus S, Somer H, Baumann P. (2002) Hyperkalemic periodic paralysis. Duodecim.118(14):1475-9.5.

 

-Rudolph, J; Spier, S; Byrns, G; Rojas, C; Bernoco, D y Hoffman. (1992). Parálisis Periódica en Caballos Cuarto de milla: una mutación en el canal de sodio difundida por la crianza selectiva. Nature Genetics. 2, 144-147.

 

-Spier, J. (1999) Current facts about Hyperkalemic Periodic Paralysis in horse (hypp) disease. O desde http://www.vgl.ucdavis.edu/-lvmillon/hypp.html./

-Spier, SJ, Carlson, GP, Holliday, TA, et al (1990). La parálisis periódica hipercaliémica en caballos. J Am Vet Med Assoc. 197. Pp 1009-1017. De http://www.vgl.ucdavis.edu/services/hypp.php/

 

-Spier SJ. (1993). Current facts about hyperkalemic periodic parálisis (HYPP) disease. The Quarter Horse Journal. April1993. pp 60-63.

 

http://www.equisan.com//

 

https://www.vgl.ucdavis.edu// (Página oficial Universidad de California, Davis: Medicina Veterinaria.)

 

http://www.aqha.com//

http://www.horsetesting.com/Equine/Genetic_Disease/HYPP.asp (Hyperkalemic Periodic Paralysis Disease)

 

 

Anuncios

Síndrome del potro lavanda. Monografìas de alumnos

En este ocasión, una de mis alumnas Micaela Tessan desarrolló una monografía de esta enfermedad hereditaria en equinos.

Mis felictaciones a ella y espero les sea útil a muchos.

Saludos

Gaby

 

“Síndrome del potro lavanda”

Alumna: TESAN, Micaela Yanina

UNRN

Cátedra: Genética Básica

Fecha de entrega: 9/11/2015

Profesora: IGLESIAS, Gabriela

 

“Síndrome del potro lavanda”

La siguiente monografía se realiza dentro del marco de la carrera de Medicina Veterinaria, para la cátedra de Genética Básica, con el objetivo informar la investigación sobre el tema: Síndrome del potro lavanda (EPA). Es un trabajo en el que se expone en forma explícita las características y datos de una enfermedad genética, a partir de la investigación de diferentes fuentes sobre la misma.

El Síndrome Potro Lavanda (EPA) o también conocido como capa de color de dilución letal (CCDL), es un trastorno neurológico fatal que afecta a los potros recién nacidos. El trastorno se ha reconocido desde la década de 1950 y es una enfermedad rara pero significativa en el caballo árabe, principalmente en el subgrupo egipcio. En el texto: Whole-Genome SNP Association in the Horse: Identification of a Deletion in Myosin Va Responsible for Lavender Foal Syndrome, se define que aproximadamente el 10% de los árabes con líneas genéticas egipcias se cree que lleva a la mutación genética responsable del EPA.

El trastorno es causado por una mutación en Miosina-Va, una proteína motor que se encuentra en las células nerviosas, y causa problemas neurológicos graves inmediatamente después del nacimiento, aunque estos no son terminales para el potro se lleva a cabo la eutanasia del animal por los distintos efectos que producen. Aparte de los signos neurológicos, la característica más llamativa de esta condición es el pelaje o color de capa diluido. En unos pocos casos, el color es un muy llamativo plata pálida tonalidad lavanda, de ahí el nombre de “síndrome del potro lavanda”. El nombre más apropiado es dilución del color de escudo letal, ya que muchos potrillos afectados no muestran el sorprendente  color lavanda. Otros colores de la capa diluida observados en esta afección son de peltre (gris claro pizarra) y castaño claro (rosa). Ver Figuras 1 y 2 ilustrativas.

 

Potro lavanda

Figura 1: Potro afectado con Síndrome del potro lavanda. Fuente: Whole-Genome SNP Association in the Horse: Identification of a Deletion in Myosin Va Responsible for Lavender Foal Syndrome.

 

Potro lavanda y potro normalFigura 2: a la izquierda un potro normal y a la derecha uno con el Síndrome del potro lavanda. Fuente: Lavender Foal Syndrome- MYO5a.

Según explica BELLONE: “Los melanocitos se derivan de células embrionarias de origen en la cresta neural. Los melanocitos derivados de la cresta neural se encuentran en la piel, pelo, ciertas capas del ojo (melanocitos ovales), la oreja y leptomeninges interiores. En adición, las células madre embrionarias de origen en la cresta neural también dan lugar a hueso, cartílago, tejido adiposo, células endocrinas y varios tipos de neuronas y células gliales. Por lo tanto, no es sorprendente que las mutaciones en genes que funcionen en el desarrollo de melanocitos o la melanogénesis con frecuencia causan efectos pleiotrópicos que involucran la vista, el oído y la neurología del funcionamiento.” (BELLONE, 2010). Esto explica la relación entre el color de pelaje y piel con las afecciones neurológicas, ya que provienen del mismo origen embrionario en el desarrollo del potro. El aspecto neurológico de la condición surge de transporte aberrante de orgánulos en las neuronas, que a su vez perjudica la regulación sináptica. El color observado no es diluido debido a la producción de pigmento anormal, sino a una incorrecta dispersión de los melanosomas dentro de los ejes del pelo.

El síndrome es caracterizado por varios signos neurológicos que involucran tetania (contracciones musculares involuntarias), opistótonos (hiperextensión de la cabeza y el cuello), nistagmos (movimientos involuntarios de los ojos), y el movimiento de remar de los miembros. La temperatura, el pulso, la frecuencia respiratoria son normales al igual que las mucosas aparentes orales y la elasticidad de la piel. Los potros presentan un fuerte reflejo de succión y borborigmos audibles con estado de alerta, pero debido a la tetania no pueden incorporarse y mantenerse en pie.

Según lo que expresa FANELLI, en su artículo Coat colour dilution lethal (‘lavender foal syndrome’) a tetany syndrome of Arabian foals, es importante resaltar que la tetania no se ha observado en potros con EPA en el útero, por lo cual parece estar desencadenada luego del parto. Debido a la longitud de las extremidades del potro, el confinamiento del potro dentro del útero y a la naturaleza violenta de los episodios tetánicos, sería de esperar que la hembra tuviera una ruptura del útero.

Siguiendo con el artículo de FANELLI, es útil aclarar, los potros afectados pueden ser diagnosticados erróneamente que sufren de síndrome de inadaptación neonatal (SMN), septicemia neonatal o encefalopatía neonatal. Para ellos debe tenerse en cuenta que, potros septicémicos, no suelen ser afectados en el nacimiento y poseen convulsiones que puede verse con meningitis; muchos son afebriles, pero con hematología generalmente indican que son potros infectados. Los potros con EPA, que se mantienen con vida durante varios días, a menudo muestran lesiones de septicemia neonatal, aunque esta no la hayan adquirido antes de nacer. Los potros afectados con NE (encefalopatía neonatal) por lo general parecen normales al nacer, pero dentro de las primeras 24 horas muestran una pérdida completa y repentina del reflejo de succionar, disfunción cerebral, convulsiones con depresión respiratoria. Muchos potros afectados con NE pueden recuperarse pasando los 30 días desde el nacimiento. Los que mueren tienen lesiones en el SNC, pulmones y posiblemente otros órganos.

Herencia:

El Síndrome Potro lavanda es un trastorno autosómico recesivo. El término autosómico recesivo describe a uno de los patrones de herencia mendelianos y se caracteriza por no presentar el fenómeno de dominancia genética. En este patrón de herencia el fenotipo que caracteriza al alelo recesivo se encuentra codificado en un gen cuyo locus está  ubicado en alguno de los autosomas o cromosomas no determinantes del sexo, en este caso el cromosoma equino 1. Este alelo recesivo no se manifiesta si se encuentra acompañado por un alelo dominante.

Es decir, que por este mecanismo determinado síndrome heredable, se transmite en una forma que puede ser predecido sin tener en consideración el sexo del descendiente. Además para que esta característica heredable se exprese es necesario que el descendiente reciba el gen de ambos progenitores (Fig.: 3). Los adultos pueden llevar a una sola copia del gen mutado sin mostrar ningún síntoma, pero cuando dos caballos que son portadores son cruzados, un cuarto de la descendencia resultante se ven afectadas por el llamado síndrome del potro lavanda.

 

pedigree
Figura 3: Pedrigree de herencia autosómica recesiva. Fuente: Lavender Foal Syndrome- MYO5a.

Gen:

Los caballos son animales mamíferos provenientes de la familia de los équidos, tienen 32 pares de cromosomas ó 64 cromosomas 2n=64.

cariotipo equino

 

Figura 4: Cariotipo equino. Fuente: Genetics and Horses.

Como se explicó anteriormente el EPA es una condición autosómica recesiva y está causada por una deleción de una sola base de el gen en el cromosoma 1 MYO5A del caballo, que codifica la proteína de miosina Va. Esta proteína se mueve a lo largo de la actina vinculando los filamentos uno con otros, impulsados ​​por la hidrólisis de ATP. Miosina-Va se expresa en el cerebro y piel donde funciona en el transporte de orgánulos y tráfico de membrana, además juega un papel en la transporte axonal y dendrítico en neuronas. La miosina posee varias partes: la cadena pesada se compone de una cabeza globular N-terminal que es conservadas a través de las distintas clases de miosina, una región del cuello con una estructura alfa-helicoidal y un dominio de cola que consiste en un espiral helicoidal intercalados con dominios globulares y que termina en una cola globular C-terminal. La cabeza de la proteína contiene, los sitios para la hidrólisis de ATP y vinculante de actina y contiene aproximadamente 765 aminoácidos de longitud. La región del cuello contiene a la calmodulina con 147 aminoácidos. La estructura alfa-helicoidal es el sitio de dimerización, mientras que su segmento globular distal es responsable de la unión a carga y proteínas. La cola globular contiene al menos dos sitios de unión separada con una alta posibilidad para interactuar con una amplia gama de diferentes moléculas de carga.

En el texto: Lavender foal syndrome in Arabian horses is caused by a single-base deletion in the MYO5A gene, se describe la mutación de este síndrome dentro del cola de dominio globular de la proteína miosina Va.

Como expresa en su investigación BROOKS, “La deleción de una sola base en el exón 30 (ECA1 g.138235715del) se sospecha que provoca un cambio de marco que lleva a un codón de parada prematuro en una altamente conservada región del gen” (Brooks, 2010). Esto explica porque en la comparación de las secuencias de nucleótidos entre los equinos afectados y los individuos normales se revelaron solamente una variación de la secuencia en el fragmento amplificado. Por el desplazamiento del marco, que resulta en un codón de stop prematuro el ácido amino sustituido, arginina, y el truncamiento resultante de casi la mitad de la cola de proteína es la causante de mutación de la enfermedad.

Por lo tanto, esta parada de traducción prematura en la miosina produce que no sea capaz para el transporte intracelular. En el caso de melanocitos, a diferencia de aquellas mutaciones que los alteran en su migración y diferenciación, esta supresión alteraría la función de los melanocitos maduros, en los que el tráfico de melanosomas a la periferia de la célula por lo que la transferencia de  queratinocitos será interrumpida. Del mismo modo, en las células del sistema nervioso central, receptoras de glutamato y secretoras, los gránulos no serían transportados correctamente, y por lo tanto este podría explicar los diferentes defectos neurológicos del EPA.

Según BELLONE: “La mutación genética que causa este trastorno ha sido descubierto muy recientemente por un genoma completo a base de SNP enfoque de asociación. El rasgo mapeada a una región 10.5 -MB en ECA1 que contiene el candidato gen miosina VA (MYO5A) y la proteína ras-asociados RAB27A (RAB27A), que causan trastornos similares en ratones y los seres humanos (síndrome Griscelli). Además de neurológica anomalías, las mutaciones en RAB27A a menudo causan trastornos inmunológicos” (Bellone, 2010). Esto ubica a la mutación dentro del cromosoma 1 del equino donde se presenta el gen MYO5A.

 

 

 

 

 

 

 

 

cromosoma equino 1

 

 
Figura 5: Ubicación del gen MYO5A. Fuente: MYO5A Gene (protein coding).

BIERMAN, GUTHRIE Y HARPER aclaran, sobre la secuenciación directa de la región que contiene la delección, que los individuos afectados y portadores eran homocigotos y heterocigotos para la eliminación, respectivamente, mientras que la eliminación no se produjo en los individuos normales.

Además como exponen en su investigación BIERMAN, GUTHRIO Y HARPER: “Para identificar el defecto molecular que subyace a este trastorno, se produjo el secuenciado de la región codificante del gen en MYO5A, de los animales afectados y portadores normales. Se extrajo el ADN a partir de tejidos y muestras de sangre de cuatro potros afectados, sus padres y madres portadoras. Llevándose a cabo luego la amplificación por PCR de la

región de codificación MYO5A se realizó utilizando 12 conjuntos de cebadores”. La técnica de PCR junto con el conocimiento del genoma equino pudieron exponer cada parte del cariotipo con sus mutaciones más importantes, entre una de ellas el síndrome del potro lavanda o EPA, intentando evitar que se presenten nuevos casos de animales afectados por el alto porcentaje que presenta esta afección en la población total de caballos árabes.

La forma en la que se realiza el análisis por PCR se describe, según lo publicado por IGLESIAS, en el audio visual PCR o Reacción en cadena de la Polimerasa.
La PCR o reacción de la cadena de la polimerasa, es un método muy utilizado para amplificar y duplicar una determinada región de ADN, a partir de una muestra de tejido en este caso de pelo de la cola o crin del caballo a analizar. Esa región especifica que se quiere amplificar o secuenciar es llamada secuencia target, de la misma se pueden hacer millones de copias sin necesidad de purificar la muestra.

La técnica por PCR cuenta con la realización de distintos ciclos. El primer paso consta de elevar la temperatura a 95ºC para que se separen las cadenas o se desnaturalicen; luego se baja la temperatura a 60ºC para que se unan los primer específicos a cada una de las cadenas complementarias. Estos primer sirven como molde para que la polimerasa sintetice ADN hacia el extremo 3´usando nucleótidos libres a una temperatura de 72ºC. Solo esta región será amplificada por la polimerasa, debido a que solo puede hacerlo atraves de los primer específicos, en algunas cadenas no se detendrá hasta que la misma no se descarrile. Al final de este primer ciclo se ha formado dos cadenas doble hélice a partir de una.

En el segundo ciclo los tres pasos se repiten: desnaturalización a los 95ºC, unión de los primer específicos a 60ºC y síntesis de la polimerasa elevando la temperatura a 72ºC, de modo que se sintetiza de 3´a 5´obteniendose cuatro cadenas con un extremo 3´mas largo.

Al principio del ciclo tres vuelven a repetirse los pasos, al final podrán observarse dos moléculas doble cadena cortas especificas o target y seis moléculas doble cadena con extremo 3´mas largo. A medida que avanzan los ciclos la cantidad de moléculas crece exponencialmente, con lo cual, alrededor del ciclo treinta obtendremos mil millones de moléculas target o especificas y solo sesenta moléculas de cadena 3´mas larga que permanecen en la reacción, de esta manera es muy difícil que se produzca un error en la toma de target.

Debido a que rara vez el ADN de un individuo tiene las mismas secuencias de sitios de restricción y de distancia entre estos sitios, es que se procede a la técnica de fragmentos de restricción de longitud polimórfica (RFLP). Al cortar una muestra de ADN con enzimas de restricción concreta, se obtienen fragmentos de ADN de distinta longitud. Estos se separan por electroforesis que los ordena según la longitud de los mismos, utilizando una corriente eléctrica que los hace mover hacia el polo positivo sobre una hoja de gel.

 

La presencia o ausencia de delección se determina por el ensayo PCR-RFLP utilizando una endonucleasa que reconoce el sitio Fau I (CATATG). En el patrón de separación electroforética de un individuo normal (homocigoto dominante) comprende dos productos de PCR-RFLP, cada uno de longitud distinta; mientras que el análisis en un individuo que contiene la deleccion (homocigoto recesivo) posee una longitud equivalente a la suma de las longitudes de las dos obtenidas en un animal normal. En cambio un caballo portador (heterocigoto para ambos) tendrá tres productos, teniendo cada una uno longitud distinta. Ver figura 6 ilustrativa

PCR-RFLP

 

Figura 6: representación fotográfica de separación electroforética de muestras de varios individuos equinos, luego de haber sido sometido a la técnica de fragmentos de restricción de longitud polimórfica (RFLP). B: individuo homocigota recesivo portador del síndrome de potro lavanda. C: individuo heterocigota portador del síndrome. D y E: individuos homocigotas dominantes normales. Fuente: Identification of mutation and method for detecting lavender foal syndrome in the horse.

 

Conclusiones:

En esta monografía se expuso la información más importante del tema investigado. Debido a que el genoma equino fue descripto hace muy poco aún no se conocen todas las posibles mutaciones y sus relaciones, aunque una de las más importantes y sobre todo en los potros de raza árabe, es el síndrome del potro lavanda. Las afecciones que provocan no son totalmente letales pero dejan al animal imposibilitado para pararse y alimentarse por sí solo, debido a las afecciones neuronales, por lo cual el animal debe ser sacrificado. Como el gen MYO5A posee un alto porcentaje de herencia (10% en la población árabe y 25% en herencia mendeliana) es recomendable hacer análisis de pedigree en la busca de animales que no posean este gen recesivo oculto. Con técnicas de PCR se puede analizar no solo la secuenciación de los genes sino también el análisis funcional de los mismos en busca de mutaciones. En el caso de EPA la mutación del gen MOY5A, ubicado en el cromosoma 1 de los equinos, es una mutación maligna que causa la imposibilidad de mantener al potro con vida.

Bibliografía:

*ANIMAL GENETCS. “Lavender foal syndrome in Arabian horses is caused by a single-base deletion in the MYO5A gene”. A. Bierman, A. J. Guthrie and C. K. Harper. Laboratory and Department of Production Animal Studies, University of Pretoria, South Africa. 13 April 2010 (pág. 199-201).

 

*ANIMAL GENETICS. “Pleiotropic effects of pigmentation genes in horses”. R. R. Bellone. Department of Biology, University of Tampa USA. 21 June 2010. (pág: 100-110).

 

*BROOKS ET AL. “Identification of mutation and method for detecting lavender foal syndrome in the horse”. Samantha A. Brooks, Van Etten, NY (US); Nicole Gabreski, Coudersport, PA (US); Doug Antczak, Ithaca, NY (U S). Cornell University, Ithaca, NY (U S). Jan. 13, 2015.

 

 

*IGLESIAS, Gabriela. Audio visual: PCR o Reaccion en Cadena de la Polimerasa (audio latino). 9 de Marzo 2008. Pág. Web: https://www.youtube.com/watch?v=Kuy4PDb6bdU

  • J. VET. INTERN. MED. “Clinical, Clinicopathologic, Postmortem Examination Findings and Familial History of 3 Arabians with Lavender Foal Syndrome”.Patrick Page, Rissa Parker, Cindy Harper, Alan Guthrie, and Johann Neser. Copyright 2006 by the American College of Veterinary Internal Medicine. (pág: 20:1491–1494).

 

*”Lavender Foal Syndrome- MYO5a”. Spring 2013. http://blackburngen677s13.weebly.com/domains.html

  • OPEN ACCESS. “Whole-Genome SNP Association in the Horse: Identification of a Deletion in Myosin Va Responsible for Lavender Foal Syndrome”. Samantha A. Brooks, Nicole Gabreski, Donald Miller, Abra Brisbin, Helen E. Brown, Cassandra Streeter, Jason Mezey, Deborah Cook, Douglas F. Antczak. Gregory S. Barsh, Stanford University School of Medicine, United States of America. Published April 15, 2010.

 

 

Paladar hendido y labio leporino en Caninos. Monografìas de alumnos

Nuevamente les dejo la monografìa de una de mis alumnas de este año sobre una patología hereditaria en caninos:

Paladar hendido y labio leporino en Caninos

Monografía de Genética

Universidad Nacional de Rio Negro

Profesora: Iglesias,Gabriela

Alumna: Aciar, María Belén

Introducción:

El paladar hendido se caracteriza porque existe una comunicación anormal entre las cavidades oral y nasal que afecta a paladar blando, duro, hueso pre maxilar y labio. Se clasifica en paladar hendido primario y secundario y ambos están en íntima relación pues tienen el mismo origen embrionario. 

 

Desarrollo:

El paladar se divide en paladar duro y paladar blando. El primero es la estructura formada por huesos incisivo, maxilar y por mucosa nasal y bucal que separa la cavidad nasal de la bucal. Mientras que el paladar blando es la continuación caudal que divide la nasofaringe de la oro faringe y no presenta estructuras óseas .En pequeños animales las alteraciones más frecuentes del paladar son: paladar hendido (que puede afectar tanto el paladar duro como blando) y paladar elongado (que solo afecta al paladar blando)

El paladar hendido es una comunicación anormal entre las cavidades bucal y nasal que implican el paladar blando, paladar duro, pre maxilar y labio . El paladar primario lo constituyen el labio y el pre maxilar, si cierre incompleto es lo que se llama hendidura primaria o labio partido (Labio leporino).

Mientras que el paladar secundario lo constituye el paladar duro, paladar blando; y el cierre incompleto de cualquiera de estas dos se denomina hendidura secundaria o paladar hendido.[1]

 

Los defectos se producen cuando las dos capas palatinas no logran fusionarse totalmente durante el desarrollo fetal ocurriendo aproximadamente entre los 25 o 28 días de la gestación en los perros. El riesgo grave de esta malformación reside en la dificultad que tienen las crías para su alimentación, ya que les es imposible succionar siéndole imposible realizar dicha acción ,generando que muchos animales mueran a los pocos días de nacer o bien son sacrificados. Las complicaciones de esta alteración son, fundamentalmente, problemas de naturaleza respiratoria como rinitis irritativas crónicas, faringitis, laringitis, otitis medias con síndrome vestibular periférico y neumonías por aspiración, que pueden llegar a ser mortales.

Estos defectos se han observado sobre todo en razas braquicéfalos con una incidencia mayor en razas puras que mestizas, entre estas razas las de mayor riesgo son: Terrier de Boston, Pekines, Bulldog, Schnauzer miniatura, Beagle, Cockerspaniel.[2]

 

 

Fuente: http://www.diagnosticoveterinario.com/labio-leporino-perro/98

 

Razas susceptibles: 

En los seres humanos y los perros, el labio leporino y paladar hendido ocurren naturalmente con diferentes grados de gravedad, y puede ser causada por varios factores genéticos y ambientales (carencias de minerales, de vitamina A, exposición de la madre a rayos X, tóxicas, corticoides, influencias hormonales y causas mecánicas). Con el fin de comprender mejor el paladar hendido en ser humanos se ha llevado a cabo varios estudios y trabajo de investigación con el mejor amigo del hombre “el perro” siendo un modelo único para ayudar a comprender las bases genéticas de origen natural.[4]

Con el fin de estudiar el paladar hendido en un sistema de modelo natural se utilizó el Retriver de Nueva Escocia (NSDTR)

DLX es una familia homeodominio. Estos genes DLX en vertebrados se expresan principalmente a nivel craneofacial, involucrado en el desarrollo del cerebro y extremidades del cuerpo, incluyendo Cresta Ectodérmica Apical. Los miembros conocidos de la familia incluyen desde DLX1 hasta DLX6.

DLX5 y DLX6 se seleccionaron para la secuenciación, estos genes codifican un miembro de un homeobox (secuencia de AN que se encuentran involucrados en la regulación de los patrones de desarrollo anatómico) siendo una familia de genes de factor de transcripción.

DLX5 y DLX6 se pueden ver para trabajar en conjunto y son esencialmente necesarias para el correcto desarrollo craneofacial, axial, y el esqueleto apendicular, cuando se produce la inactivación selectiva de dichos genes pueden conducir a tener una gran probabilidad de letalidad perinatal.[6]

 

En el siguiente grafico veremos lo dicho anteriormente: (IMAGEN 7)

Esta imagen demuestra un Pedigree de 7 familias de NSDTR que representan la segregación del alelo mutante con la LINE-1 elemento de inserción. Los símbolos llenos representan NSDTRs con el fenotipo CP1. Las líneas diagonales indican que el NSDTR ha fallecido. “+” Representa el alelo de tipo salvaje. “M” representa el alelo mutante.[7]

El análisis de segregación y alelo de frecuencia, se llevó a cabo en el gen DLX6 Line-1 indicando que dicha inserción segrega tanto con el fenotipo y con modo de herencia autosómico recesivo. En dicha imagen también podemos observar que en cada familia del pedigree hay cierta probabilidad de letalidad.[7]

 

También se realizó un PCR de amplificación y análisis de la inserción LINEA en el CP1 y NSDTR. 

 journal.pgen.1004257.g003.png


Fuente: journal.pgen.1004257.g003.png


Se realizó en DNA a partir de la corteza cerebral, tanto para DLX5 y DLX6. DLX5 y DLX6 fueron secuenciados en un neonatal NSDTRCP1 con la inserción LINE- 1 y se compararon con un solo neonatal NSDTR de control no afectado. No se identificaron polimorfismos dentro de DLX5 .El ADNc a partir del CP1 NSDTR mostró tanto la transcripción DLX6 de tipo salvaje y una transcripción más grande que contenía 1281 pares de bases de la intrónica LINE- 1 de inserción.[7]

 

El análisis de secuencia y la traducción de los aproximadamente 1,2 kilobases LINE- 1 de inserción predicen un codón de stop después de la inserción de un nuevo exón.[7] 

journal.pgen.1004257.g004

Fuente: journal.pgen.1004257.g004

 

Esquema de la estructura del gen genómico y DNA del DLX6 no afectado y (CP1) NSDTR afectado. La región de la conservación representada en rojo es la región interrumpido por la inserción LINE- 1. [7]

Materiales y métodos:

Muestras caninas y extracción de ADN

Se extrajeron muestras de sangre y tejidos de NSDTRs con paladar hendido (n = 14), hermanos de camada sanos ( n = 24) , padres (n = 11), NSDTRs no afectadas (n = 153 ). El tejido se recogió en el examen post mortem y flash congelado . Las evaluaciones de las hendiduras orofaciales se realizaron por inspección visual de los perros afectados.[8]

Imagen Computarizada

Tomografía computarizada micro-de alta resolución (micro-CT) se utilizó para evaluar las estructuras craneofaciales en 4 NSDTRs CP1 que eran homocigotos para la inserción LINE-1, y en 3 NSDTRs normales homocigóticos para el alelo de tipo salvaje.

Tomografía computarizada micro-de alta resolución (micro-CT) se utilizó para evaluar las estructuras craneofaciales en 4 NSDTRs CP1 que eran homocigotos para la inserción LINE-1, y en 3 NSDTRs normales homocigóticos para el alelo de tipo salvaje. [8]

journal.pgen.1004257.g002

Fuente: journal.pgen.1004257.g002

 

Conclusión

En resumen, la identificación de una mutación en un modelo de animal siendo el perro presentando defectos congénitos de origen natural ha permitido la identificación de nuevos genes en las personas, ayudando a comprender e informarnos más sobre este tema.

En relación a los animales es un estudio muy complejo llevando a cabo diferentes métodos de investigación, cumpliendo ampliamente con el objetivo de informar, presentar y llevar a cabo datos relevantes e informativos sobre este caso viéndose en mayor frecuencia en aquellos perros de razas con características braquicéfalos.

Referencias bibliográficas

 

  • [1] Elena Galan Diaz, Anahí Ortiz Ruiz. Anatomía aplicada de los pequeños animales: Alteraciones en el paladar. Pag:2
  • [2]Jesús Fernández Sánchez;Fidel San Román Ascaso;Nicolás Israeliantz Gunz;Alejandra Galiñanes Plaza;Marta Pedraja Marqués; María de la Morena Cabanillas. Patología de la cavidad oral: Tratamiento quirúrgico del paladar hendido secundario congénito en perro.Pag:2
  • [3]Terry Brown. (2008).Genome (3ra edición ).Editorial Medica Panamericana.
  • [4] Tratamiento quirúrgico del paladar hendido secundario congénito en perro. Hospital Clínico Veterinario Dr Jesús Mª Fernández Sánchez1,2.Facultad de Veterinaria. UCM. Madrid.
  • [5] Panganiban, G .; Rubenstein, JL (2002). “Funciones del Desarrollo de los genes homeobox distal-less / Dlx” Development (Cambridge, Inglaterra) 129 (19):.. Desde 4.371 hasta 4.386 PMID 12223397. 
  • [6] “Entrez Gene: DLX5 distal-less homeobox 5”.
  • [7] Wolf ZT, Leslie EJ, Arzi B, Jayashankar K, Karmi N, Jia Z, et al. Published: April 3, 2014. A LINE-1 Insertion in DLX6 Is Responsible for Cleft Palate and Mandibular Abnormalities in a Canine Model of Pierre Robin Sequence. PLoS Genet 10(4): e1004257. doi:10.1371/journal.pgen.1004257
  • [8]- Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81: 559–575

Espero les haya gustado y les sirva a muchos otros en el camino de aprender

Saludos

Gaby

 

¿Como se ve el ADN?

Crédito: Gabriela Iglesias

Crédito: Gabriela Iglesias

Esta pregunta me la hace muy a menudo mis alumnos porque cuando uno realiza una extracción de ADN, el ADN es viscoso pero transparente, entonces como se ve luego en un gel de agarosa si es transparente, tanto el gel como el ADN.

Hasta hace unos años atrás, se usaba el loading buffer con Azul de metileno paa indicar por dónde estaba migrando el ADN por el gel pero para poder realmente ver el ADN se suaba el Bromuro de etidio que es un colorante que bajo luz UV se pude visualizar y como se intercala entre las bases de ADN nos muestra el ADN. Se usa un aparato llamado transiluminador UV

Hoy leyendo un artículo de Vicky Doronina en BitesizeBio.com me encontré con una interesante historia que relata el comienzo y el fin de la era del bromuro de etidio. Como el artículo está en inglés, les quería dejar la traducción

Durante varias décadas, bromuro de etidio (EtBr) era la tinción característica del biólogo molecular para la visulaización de ADN. Ahora, debido a la paranoia colectiva sobre sus supuestos efectos cancerígenos, EtBr se está consignado a los libros de historia, junto con los gradientes de cloruro de cesio (CsCl) , la clonación en fago lambda, y la secuencia de ADN en el laboratorio. Es hora de tener una mirada histórica a donde todo comenzó.

Un comienzo lento

En la década de 1960 el ADN viral, el de los plásmidos y el ADN mitocondrial se separó del ADN genómico de peso molecular mucho más alto por centrifugación de alta velocidad en gradientes de CsCl, una versión muy simplificada de la misma proceso todavía se utiliza durante las preparaciones de ADN de (minipreps) plásmidos: piezas de ADN cromosómico junto con restos celulares separado de  las moléculas de plásmidos más ligeros, compactadas por centrifugación.

A diferencia de los 15 min a 12.000 xg  utilizados para minipreparaciones modernas, la separación en CsCl a cientos de miles de xg tomó días. En 1966 H. Thorne publicó dos artículos (1, 2), en el que mostró una posibilidad de separar el ADN del virus del polioma a partir del ADN de la célula huésped usando electroforesis en gel de ADN radiomarcado.

Seis años después de los artículos de Thorne, investigadores holandeses en ADN mitocondrial (C. Aat y P. Borst)  entran en la historia. Al igual que con muchos avances científicos, era como el resultado de que algo salga mal, lo que les llevó a su descubrimiento- en su caso, la ruptura de la ultracentrífuga.

Conocer la existencia de documentos de Thorne, los investigadores decidieron ver si podían separar el ADN mitocondrial en un gel. Se utilizaban de forma rutinaria en los gradientes de EtBr para separar diferentes formas de ADN mitocondrial (superenrollado, circular y lineal), era lógico para usarlo en los geles también. Además, los autores dicen que “siempre admiraban las bandas de color naranja brillante en los gradientes”, por lo que el placer estético jugó un papel en el desarrollo de la ciencia.

A partir de los primeros en adoptarlo a la actualidad

Pero el resto no es historia. Aunque la separación de ADN mitocondrial en un gel usando EtBr ha resultado tan exitoso que Aat y Borst Nunca volvieron a reparar la centrífuga, no siguieron trabajo (1.972 3) con más estudios en esta área (4).

Una revisión histórica actual por un ganador del Premio Nobel de la R. Roberts(5) cita otro artículo escrito por Sharp et al (1973) (6) donde se explicaba como usar una tinción de EtBr durante la separación del ADN por electroforesis de ADN. Aunque de Sharp et al utiliza la misma lógica de comenzar con tinción EtBr en gradiente, seguido de tinción de geles después de la corrida electroforètica y / o la adición de EtBr a los geles como Aat y Borst, que no citan el documento anterior. Formalmente, Aat y Borst tienen una prioridad porque publicaron el método primero, pero de el artículo de Sharp et al se cita 3 veces más frecuentemente, probablemente debido a su incorporación a la utilización de otra tecnología de vanguardia 1970 – digestión del ADN con enzimas de restricción.

¿Donde esta ahora?

Ahora, a principios del 21 st siglo EtBr está siendo ampliamente utilizado en muchos laboratorios aún, pero la combinación de su supuesto efecto cancerígeno y su exigencia de luz UV ha causado una fuerte presión en la salud y seguridad, para reemplazarlo en muchas instituciones. Muchos laboratorios fueron “EtBr libre” y probablemente no hay vuelta atrás. Varios tintes o tinciones alternativas están actualmente en uso como sustituto de EtBr, usted puede leer sobre ellos en este artículo.

La historia del ascenso y caída de EtBr muestra un patrón visto a menudo con técnicas científicas: saltos intuitivos basados ​​en ideas previas, a menudo olvidados; un comienzo lento seguido por la adopción generalizada. Por último, el descenso en una controversia de quién lo usó por primera vez.

Literatura:

Literature:

  1. Thorne H. V. Electrophoretic separation of polyoma virusDNA from host cell DNA. Virology (1966), 29, 234 – 239.
  2. Thorne H. V. Electrophoretic characterization and fractionation of polyoma virus DNA. J. Mol. Biol. (1967), 24, 203 – 211.
  3. Aat C. and Borst P. The gel electrophoresis of DNA.Biochim. Biophys. Acta(1972), 269, 192 – 200.
  4. C. Aat and P. Borst. Ethidium DNA Agarose Gel Electrophoresis: How it Started. IUBMB Life, 2005, 57(11): 745 – 747
  5. Roberts R.J. How restriction enzymes became the workhorses of molecular biology.PNAS (2005), 102(17), 5905 – 5908
  6. Sharp P. et al. Detection of two restriction endonuclease activities in Haemophilus parainfluenzae using analytical agarose–ethidium bromide electrophoresis. Biochemistry (1973), 12(16), 3055-63.

Espero les hasya gustado como a mí.

Si prefieren leer el artículo orginal en inglés, les dejo el link abajo

Fuente: http://bitesizebio.com/25292/burning-bright-a-brief-history-of-ethidium-bromide-dna-staining/?utm_content=24584782&utm_medium=social&utm_source=facebook

Terapia génica de la Distrofia muscular de Duchenne en perros ya lista

screenshot-www.genengnews.com 2015-11-02 00-09-28

La “Distrofia muscular de Duchenne “(DMD) es un trastorno muscular,  progresivo y que rápido que afecta principalmente a los hombres en una proporción de aproximadamente 1 en 3500 nacimientos en todo el mundo. La enfermedad es causada por una mutación en el gen de la distrofina en el cromosoma X y se hereda de manera recesiva genéticamente,  ligada al sexo (Los individuos con DMD tienen pérdida progresiva de la función muscular y debilidad, que comienza en las extremidades inferiores y, por desgracia lleva a la muerte prematura.

Dentro de las células de los pacientes con DMD, el tejido muscular dañado se sustituye con fibroso, graso o tejido óseo y en última instancia pierde función. Durante años, los científicos han buscado una manera de tratar con éxito la enfermedad con eficacia. Ahora, en Perros,  investigadores de la Universidad de Missouri (MU) han tratado con éxito con DMD mediante la terapia génica y dicen que se están planeando ensayos clínicos en humanos en los próximos años.

“Esta es la enfermedad muscular más común en los niños, y actualmente no existe una terapia eficaz”, explicó el autor principal y líder del estudio Dongsheng Duan, Ph.D., profesor en el departamento de microbiología molecular e inmunología de la Facultad de Medicina de la UM. “Este descubrimiento llevó a nuestro equipo de investigación de más de diez años, pero creemos que estamos en la cúspide de tener un tratamiento para la enfermedad.”

La mutación gen de la distrofina en los pacientes con DMD interrumpe la producción aguas abajo de la proteína. La ausencia de la proteína distrofina se inicia una reacción en cadena que eventualmente conduce a la degeneración de las células musculares y la muerte. Mientras que la premisa de la terapia génica para DMD es aparentemente sencillo genéticamente reparar los genes de distrofina-intentos mutadas se han visto obstaculizados por una variedad de razones, una de las cuales es que el gen de la distrofina es una de las más grandes del genoma humano.

“Debido a su tamaño, es imposible entregar la totalidad del gen con un vector de terapia génica, que es el vehículo que transporta el gen terapéutico al sitio correcto en el cuerpo”, comentó el Dr. Duan.”A través de la investigación anterior, hemos sido capaces de desarrollar una versión en miniatura de este gen llamado microgene. Este distrofina minimizada protegida todos los músculos en el cuerpo de los ratones enfermos.”

El uso de un virus adeno-asociado, el equipo de MU demostraron que podían entregar el microgene a todos los músculos en el cuerpo de un perro enfermo. Los perros fueron inyectados con el virus cuando eran entre dos y tres meses de edad y acaba de empezar a mostrar síntomas de DMD. Los perros son ahora de seis a siete meses de edad y continúan desarrollándose normalmente.

Los perros Dr. Duan y su equipo utilizados tenían un tamaño de cuerpo similar a la de un niño afectado. Los investigadores tienen la esperanza de MU que el éxito en el perro va a establecer las bases de las pruebas en humanos.

“El virus que estamos utilizando es uno de los virus más comunes, sino que también es un virus que no produce síntomas en el cuerpo humano, haciendo de esta una manera segura para difundir el gen de la distrofina en todo el cuerpo”, señaló el Dr. Duan. “Estos perros desarrollan DMD naturalmente en una forma similar a los seres humanos. Es importante tratar la DMD temprano antes de la enfermedad hace mucho daño ya que esta terapia tiene el mayor impacto en las primeras etapas de la vida.”

Les dejo un video en inglés pero se le pueden poner subtitulos

Fuente: http://www.genengnews.com/gen-news-highlights/gene-therapy-treatment-for-muscular-dystrophy-effective-in-dogs/81251893/

Más información y bibliografía, aqui:

http://online.liebertpub.com/doi/full/10.1089/humc.2015.29003.mfi

Técnica de CrispCas9 para editar el genoma

 

 

Fuente: Crips Casp9 de synbiomx.org

Fuente: Crips Casp9 de synbiomx.org

La técnica de Crisp Cas9 descubierta solo hace un par de años ha revolucionado la ingeniería genética y la posibilidad de crear animales transgénicos, así como crear mutaciones en animales de laboratorio que sean modelos para estudio de enfermedades hereditarias, tanto las producidas por mutaciones simples, como las que se originan por varias mutaciones en disitnos genes, en diferentes cromosomas o sitios del genoma. Por ende podría ser utilizada para terapia génica en humanos que padecen enfermedades hereditarias.

Sin más introducción les quiero dejar un video que he traducido al castellano (español) sobre la técnica. Espero les guste.

Saludos

Gaby

¿Qué son las enfermedades raras?

¿Qué son las enfermedades raras?

“Se les llama así a las enfermedades que afectan a un porcentaje muy limitado de la población. Hay distintas clasificaciones, pero podríamos considerar como rara una enfermedad que afectara a menos de 5 de cada 10.000 habitantes de una determinada población. Según la Organización Mundial de la Salud, existen en torno a 7.000 enfermedades raras que padece el 7% de la población mundial, unos 28 millones de personas en Europa y 3 en España. Se trata de enfermedades muy graves, crónicas, degenerativas, muchas desconocidas para el gran público y de características muy distintas, lo que impide un tratamiento generalizado. Suelen tener un comienzo muy precoz: dos de cada tres aparecen en los primeros dos años de vida. En la mitad de los casos afectan al desarrollo motor, sensorial o intelectual, lo que lleva a una discapacidad en autonomía a uno de cada tres enfermos. Las cifras de mortalidad son muy altas: el 35% de las muertes llegan antes de un año; el 10%, entre uno y cinco años, y el 12% entre los cinco y quince años. A la dureza de la enfermedad se une la escasa financiación en investigación y el olvido de los laboratorios farmacéuticos ante la imposible recuperación económica de una inversión, dado el escaso número de enfermos que consumirían ese fármaco. Hay alguna enfermedad, por ejemplo, que sólo afecta a 6 personas en toda España. Pero otras, como la esclerosis lateral amiotrófica, la padecen cerca de 6.000 personas. Datos tomados de la web de la Federación Española de Enfermedades Raras: http://www.enfermedades-raras.org/index.php/enfermedades-raras/enfermedades-raras-en-cifras”  Extractado de la editorial de José María Izquierdo en una artículo del diario “El país semanal”, denominado: En un siglo habrá muchas menos enfermedades raras.

Allí podrán leer el artículo completo sobre una entrevista realizada a una científica Argentina que vive y trabaja en España en edición de genes y terapia génica.

Su nombre es Marcela del Río y aqui les dejo su foto

Marcela del Río. / GORKA LEJARCEGI

La entrevista completa incluye varios tópicos y pueden leerla en forma completa aquí

Espero les guste

Saludos

Glosario de Genética: para principiantes

Glosario Hablado de Términos Genético

Glosario Hablado de Términos Genético

Hola a todos, si alguna vez leyendo alguna de estas paginas, u otros Blogs, les ocurre que se encuentran con términos que no conoces o no saben que significan, les recomiendo este sitio del  National Human Genome Research Institute and National Institutes of Health  que contiene además ilustraciones, pronunciación de cada tema y hasta incluye un test online para evaluar tus conocimientos. La verdad es que está muy bien hecho.

Les dejo el link y espero les sirva

Saludos

http://www.genome.gov/GlossaryS/

PCR en tiempo real – Medicina molecular

En la página de Medicina molecular les dejo una breve introduccción a la PCR cuantitaiva en tiempo ela y algunas de sus aplicaciones. Espero que les sirva

Saludos

PCR en tiempo real – Medicina molecular.

Gel Electrophoresis Animación para práctica de laboratorio

La página del “Genetic Science Learning Center” de la Univerisdad de Utah, hace tiempo que posee una serie de herramientas educativas muy interesantes para nuestros alumnos.

Se animan a separar fragmentos de ADN de distitnos tamaños? Esto se hace usando la separación en geles de agarosa mediante el uso de una fuente de poder eléctrica. Por eso se denomina electroforesis.

Se animan a tomar las muestras y poneras en el gel? con este tipo de animación pueden hacerlo.

El único problema es que está en inglés, pero como práctica y para repasar los conceptos me parece muy lindo

Les dejo el link abajo

A disfrutarlo!!!

Gel Electrophoresis.

Bioarray: Diagnóstico Genético

Bioarray es un laboratorio de diagnóstico e investigación especializado en el análisis genético y dirigido al sector médico, de investigación y biotecnológico

¿De que hablamos ahora?

Todo muy interesante

Eterna Curiosidad

Blog educativo y de divulgación de genética. Por Gabriela Marisa Iglesias. Med. Veterinaria. Mag. en Biotecnología. Especialista en Entornos Virtuales de Aprendizaje. Prof. Asociada Genética. Carrera Veterinaria. Univ. Nacional de Río Negro. Argentina

Mered HaKadosh

Las múltiples caras del sionismo

Blog de Gesvin

"Si enseñamos a los alumnos de hoy como enseñábamos ayer les estamos robando el futuro" - J. Dewey

red synbioMX

Red Nacional de Biología Sintética de México

BIO/GEOLOGÍAPG

Blog de las materias de Biología y Geología de María Pilar García profesora del IES Parque Goya

Biblioteca Interactiva SUH

Este espacio pretende sistematizar las herramientas construidas en la campaña: "SUHmate la prevención está en tus manos"

Biomedicina

Este blog será un sitio para hablar y compartir novedades acerca del mundo de la biomedicina

PROVERBIA

"Crítica Social, Lírica y Narrativa"

Compartir intereses

Infografías

A %d blogueros les gusta esto: