Monografías de alumnos: DEFICIENCIA DE PIRUVATO QUINASA (PK) en caninos

AUTORES:

  • RIOS GIMENA
  • CRUZ MICAELA

Curso de Genética Básica. Carrera de Veterinaria. Universidad Nacional de Río Negro. Argentina. 2017

By Flickr user dmealiffe

By Flickr user dmealiffe

Deficiencia de piruvato quinasa (PK) en caninos

Introducción

La anemia hemolítica es un trastorno que genera la disminución de la masa de globulos rojos sanguíneos y puede ser causada por diferentes alteraciones, una de ellas es a nivel genético debido a una mutación del gen PKLR. Esta es una alteración autosómica recesiva que se caracteriza por una disminución en la actividad catalítica de la enzima piruvato quinasa. Este trastorno provoca que los glóbulos rojos se destruyan mas rápido de lo que la medula ósea pueda producirlos. El animal afectado puede presentar diferentes signos clínicos, como mucosas pálidas, aumento del ritmo cardiaco y una tolerancia reducida al ejercicio. Las razas más susceptibles a esta deficiencia son Labrador Retriever, Pug, Beagle y Basenji.

 

¿Qué es la piruvato quinasa?

La piruvato quinasa es una enzima importante en el metabolismo energético de los glóbulos rojos. Se trata de una enzima de la vía glucolítica y su actividad enzimática proporciona la mitad de la energía (moléculas de ATP) producida en dicha vía, en el interior del eritrocito. La falta de energía en forma de ATP hace que se altere el equilibrio dentro del hematíe y se pierda agua y potasio que hay en su interior, generando una deshidratación de la célula y su posterior lisis. Este trastorno hereditario causa una deficiencia en esta enzima que genera un marcado agotamiento de la vida útil de los glóbulos rojos y, por lo tanto, una anemia hemolítica grave, produciendo un bajo hematocrito debido a la lisis celular.(Harvey, JW 1995); (Henderson A, 2007)

Existen 4 variantes de la enzima PK las cuales son específicas de cada tejido, entre las mas importante a destacar se encuentran: M2: ubicada en músculo esquelético; la tipo R: presente en eritrocitos, y la tipo L: localizadas en el hepatocito. En un estudio realizado en perros de raza Basenjis, se ha demostrado que este trastorno genera una deficiencia en la actividad catalítica de la enzima piruvato quinasa tipo R, por lo tanto el organismo intenta compensarlo, aumentado las concentraciones de PK-M2 en eritrocitos. (Whitney KM, 1994)

 

¿Quién codifica a piruvato quinasa?

El gen responsable de codificar a la enzima piruvato quinasa se lo conoce como gen  PK-LR o también conocido como PK1; PKL; PKR; RPK, ubicado en el cromosoma 7 de los caninos.

La longitud de este gen es de 1972 pb, y presenta 12 exones.

La siguiente imagen corresponde al gen PKLR y su recuento de exones. Se pueden observar las diferentes variantes ya sea tipo R o L, en el cual el recuento de exones se reduce a 11. Esto se debe al proceso de maduración de ARN o también llamado splicing alternativo o empalme alternativo, en el cual se van todos los intrones y solamente quedan los exones, que permite obtener diferentes tipos de ARN mensajero y por ende diferentes isoformas de proteínas específicas de cada tejido.

PKLR figura 1

Fuente: NCBI

 

Figura 1. Esquema del gen PKLR en caninos

 

Figura 2 Genetica (2)

Figura 2. Variantes del gen PKLR en diferentes tejidos. Por Ríos, G. y Cruz, M

 

¿Cómo se hereda?

La deficiencia de la enzima piruvato quinasa es un rasgo autosómico recesivo que significa que ambos padres de un perro afectado son portadores del trastorno. Los portadores tienen aproximadamente la mitad de la actividad enzimática normal en los glóbulos rojos y no se ven afectados clínicamente. Si se aparean dos portadores pueden producir descendencia afectada. (Harvey, JW y col, 1995)

Dicho trastorno es un típico caso de dominancia incompleta o codominancia en la cual los homocigotas son fenotípicamente diferentes a los heterocigotas, no existe un rasgo dominante ni tampoco recesivo, pero la enfermedad se manifiesta en la descendencia.

 

Gametas            Hembra

Macho

 A a
A AA Aa
a Aa aa

GENOTIPO                  FENOTIPO

AA  25%                      1/4  SANO

Aa  50%                       1/2PORTADOR

aa  25%                       1/4  ENFERMO

Figura 3. Cuadro de un entrecruzamiento de dos individuos heterocigotas, portadores. Por Ríos, G. y Cruz, M.

 

Los perros con deficiencia de PK generalmente muestran signos de los 4 meses a 1 año de edad. Son lentos para crecer y muestran una leve debilidad y baja tolerancia al ejercicio. También muestran cambios en sus huesos, específicamente el reemplazo de la medula ósea por tejido fibroso y el endurecimiento o la densidad anormal del hueso (llamada mielofibrosis y osteoclerosis). Los perros con esta deficiencia por lo general mueren antes de los 4 años de edad debido a insuficiencia de la medula ósea y/o enfermedad hepática. (Harvey, JW y col, 1995)

Mutaciones

Los resultados de los estudios realizados en diferentes razas de perros se pueden obtener de distintas regiones del gen, según se localice en cada raza. Cabe destacar que estos datos fueron obtenidos de un estudio realizado en el año 2012 con el objetivo de determinar la causa de la deficiencia de esta enzima en caninos. A continuación se describen las mutaciones puntuales para cada caso:

Labrador Retriever: el lugar donde ocurre la mutación se presenta en el exón 7, en el cual se genera un cambio en la base 799, de citocina por timina en el gen PKLR (mutación o sustitución de sentido erróneo), dando como resultado un codón de stop prematuro (TAA) debido a la terminación temprana de la enzima, la cual carece de sitios activos importantes en la unión al sustrato. (G. InalGultekin y col. 2012)

 

figura 4 genetica (2)

Figura 4. Esquema de la mutación del gen PKLR en canino de raza Labrador Retriever, cambio de Citocina por Timina en la base 799. Por Ríos, G. y Cruz, M.

Pug: se encontró una sustitución en el exón 7, en la base 848 que origino un cambio de timina por citocina, esta mutación puntual cambia a GTC que codifica valina, en GCT que codifica alanina, generando una proteína diferente con una mínima actividad catalítica.(G. InalGultekin y col. 2012)

 

Figura 5 genetica (2)

Figura 5. Esquema de la mutación del gen PKLR en un canino de raza Pug, sustitución de Timina por Citocina en la base 848, generando una proteína diferente. Por Ríos, G. y Cruz, M.

Beagle: se descubrió una mutación de sustitución de una sola base en el exón 8 del gen PK-LR. (sustitución de sentido erróneo) Esta mutación puntual cambia el codón GGC a AGC y así reemplaza a una glicina por una serina. Sólo la glicina es tolerada en esta posición por lo tanto es muy probable que esta mutación cause una proteína no funcional. (G. InalGultekin y col. 2012)

 

figura 6 genetica

Figura 6. Esquema de la mutación del gen PKLR en canino de raza Beagle, sustitución de Guanina por Alanina generando una proteína diferente no funcional. Por Ríos, G. y Cruz, M.

 

METODOS DE DIAGNOSTICO MOLECULAR

Las mutaciones fueron detectadas por PCR-RFLP en perros de raza Labrador, Pug y Beagle.

El segmento a amplificar fue de 188 pares de bases del exón 7. Los productos fueron digeridos con enzimas de restricción que cortan, en el  labrador al alelo silvestre 2 veces produciendo 3 fragmentos, de 96, 46, 46. El alelo afectado, en cambio,es cortado solamente 1 vez, produciendo un fragmento de 142 y 46 pb ya que la enzima no reconoce un sitio de corte al cambiar una base por otra. (G. InalGultekin y col. 2012)

En el caso del pug los productos de la digestión, son cortados en 2 bandas de 141 y 47 pb para el alelo normal, mientras que al alelo mutante le falta el sitio de restricción y no corta, mostrando así los 188 pb.

Por último, en el caso de los Beagle, la digestión corta al alelo silvestre de 109 pb en un fragmento de 90 y otro de 19 pb, mientras que el alelo mutante no se digiere, mostrando la banda no cortada a 109 pb. El segmento que se amplifico en esta raza se obtuvo del exón 8.(G. InalGultekin y col. 2012)

figura 7 genetica

Figura 7. Esquema del producto de amplificación para raza en particular. Por Ríos, G. y Cruz, M.

 

IMPORTANICIA DE SU DIAGNOSTICO

Debido a que es un rasgo autonómico recesivo, ambos padres de los perros afectados portan el gen defectuoso. Los individuos heterocigotos generalmente son asintomáticos y puede ser difícil detectar signos clínicos en ellos, por eso, es útil comprobar la presencia de la enfermedad antes de la reproducción. Este es uno de los factores más importante a tener en cuenta en los lugares dedicados a la cría, ni los perros afectados (homocigota recesivo) ni los portadores (heterocigota) deben utilizarse en la reproducción, debe ser un conocimiento fundamental para los criadores que buscan detectar portadores y eliminarlos de la población reproductiva. (Gultekin GI, y col. 2012)

Actualmente se han registrado 10 casos de deficiencia de PK en todo Estados unidos, 40 en Europa y 11 en Sudamérica. Pero se sospecha que la incidencia es mayor debido a que la mayoría de los perros utilizados para detectar la deficiencia de PK proviene de casas de cría. (G. Inal Gultekin y col, 2012)

 

Conclusión:

Debe considerarse la deficiencia de la enzima piruvato quinasa en caninos como una importante alteración que produce una anemia hemolítica grave y pone en riesgo la calidad y tiempo de vida del animal, limitándose a ciertas razas de perros particularmente. Es una alteración autosómica recesiva, siendo ambos padres del afectado, portadores de la mutación, por eso es importante conocer esta patología y detectar animales afectados o portadores de ésta, para no seguir aumentando el porcentaje de caninos con dicha deficiencia.

Bibliografía:

Harvey, JW 1995. Anemias hemolíticas congénitas y metahemoglobinemias. ACVIM-Proceedings del 13. ° Foro Médico Veterinario Anual: 37-40.
Henderson A. Anemia, Hemolítico. En: Côté E, ed. Asesor Clínico Veterinario Perros y Gatos. Missouri: MosbyElsevier, 2007: 64-66.
Sargan DR. Deficiencia de piruvato quinasa. En IDID – Enfermedades hereditarias en perros: información basada en la web para la genética de enfermedades hereditarias caninas .
vetGen : información sobre pruebas genéticas disponibles (basenjis y terriers blancos de las Highlands occidentales)

Inal Gultekin, G., Raj, K., Foureman, P., Lehman, S., Manhart, K., Abdulmalik, O., & Giger, U. (2012).Erythrocytic pyruvate kinase mutations causing hemolytic anemia, osteosclerosis, and secondary hemochromatosis in dogs. Journal of veterinaryinternal medicine, 26(4), 935-944.

Whitney, K. M., Goodman, S. A., Bailey, E. M., & Lothrop Jr, C. D. (1994). The molecular basis of canine pyruvate kinase deficiency. Experimental hematology, 22(9), 866-874.

WHITNEY, K. M., et al. The molecular basis of canine pyruvate kinase deficiency. Experimental hematology, 1994, vol. 22, no 9, p. 866-874.

https://www.guiametabolica.org/ecm/deficiencia-piruvato-quinasa

https://www.ncbi.nlm.nih.gov/gene/490425

 

 

Anuncios

Síndrome overo letal blanco (OLWS). Monografía de alumnos Genética Básica

Fuente: https://www.facebook.com/SobreCaballos/photos/a.481816315195221.107974.479648582078661/1066990530011127/?type=3&theater

Nuevamente quiero dejarles una monografía realizada por dos de mis alumnos de Genética Básica 2017, en este caso Shaira Fernández y Emilio Torres, sobre una enfermedad hereditaria en caballos, el Síndrome Overo Letal Blanco, también conocido como OLWS. Felicitaciones por el trabajo y espero ayude a muchos otros que buscan información sobre el tema.

Tema: Monografía de enfermedad genética hereditaria

Autores: Shaira Fernández – Emilio Torres

Año: 2017

Docentes: Gabriela Iglesias – María Pía Beker

Carrera: Medicina Veterinaria

Materia: Genética Básica

Universidad Nacional de Rio Negro- Sede Alto Valle y Valle Medio (AVVM)

Introducción:

Los objetivos del presente trabajo son profundizar conocimientos genéticos sobre el síndrome overo letal blanco en caballos de la raza Cuarto de Milla Americana principalmente y otras como pintados, caballos miniatura, árabes y occidentales.

El síndrome del potro blanco letal overo se conoce como aganglionosis ileocolica y está directamente relacionado con el gen EDNRB ubicado en el cromosoma 17.

Los patrones de overo blanco son causados por un solo gen (dominante) por lo contrario los caballos con dos copias del gen (recesivo) nacen completamente blancos, (Horse: University of Minnesota Extension, 2017) causando la muerte de los potrillos poco después del nacimiento debido a defectos en el desarrollo embriológico de este, alterando la migración de las células de la cresta neural, las células progenitoras de los melanocitos y ganglios intestinales. (Horse Genome Project, 2017)

Se han descubierto similitudes entre el gen O y el gen que causa la enfermedad de Hirschsprung en humanos. La mutación esta en un lugar diferente en el gen pero causa los mismos efectos: manchas blancas y defectos del desarrollo. (Horse: University of Minnesota Extension, 2017)

Contenido:  

En los caballos hay 32 pares de cromosomas, cada célula del cuerpo de un caballo contiene dos copias de cada cromosoma, una de la madre y otra del padre. (Horse Genetics,2017). El alelo overo muestra pleíotropia que significa que tiene más de un efecto sobre el fenotipo. (Horse Genetics, 2017)

Los potrillos nacen con ojos azules y una bata blanca, y pueden tener pequeñas manchas negras a lo largo de la cabeza, cola y melena. Luego de un tiempo comienzan con cólicos debido a que no pueden defecar, a causa de un mal desarrollo del sistema nervioso gastrointestinal. Las células embrionarias encargadas de formar los nervios mencionados anteriormente también determinan el color de piel. (Horse: University of Minnesota Extension, 2017)

La mutación que causa esta patología es una sustitución de sentido erróneo, que provoca el cambio de lisina por isoleucina, esto ocurre en el codón 118 del receptor de la endotelina B (EDNRB) que está localizado en el cromosoma 17. (Universidad de California Santa Cruz, 2008). Esta proteína está asociada a la regulación del desarrollo de las células de la cresta neural que se convierten en ganglios entéricos y melanocitos. (Santschi, 1998)

Cabe destacar que la sustitución ocurre en el primer dominio transmembrana de un receptor acoplado a la proteína G de 7 dominios transmembrana para las endotelinas. (Baynash et al., 1994; Hosoda et al., 1994).

Características propias del gen:

Gen: EDNRB

Titulo: receptor de endotelina tipo B

Mutación: ocurre en codón 118 de EDNRB

Localización: cromosoma 17

Recuento de exones: 8

Longitud: 24,536 pares de bases (bp)

Fuente: EDNRB endothelin receptor type B [Equus caballus (horse)] – Gene – NCBI. (2017).

Mutación del ADN: NM 001081837.1:c.353_354delinsAG

Efecto previsto de la mutación: Interrupción de aminoácidos (isoleucina 118 por lisina)

Fuente: Bellone, R. (2010).

figura 1 corregida

Figura 1: Secuencia gen EDNRB. Fuente: EDNRB endothelin receptor type B [Equus caballus (horse)] – Gene – NCBI. (2017).

figura 2

Figura 2: Gen endotelina B. Fuente: EDNRB endothelin receptor type B [Equus caballus (horse)] – Gene – NCBI. (2017)

Diagnóstico :

PCR especifica de alelo, es una de las variaciones de la PCR básica que se usa para identificar o utilizar los polimorfismos de una sola base (SNPs). Se utilizan primers específicos para la secuencia normal y mutante. El diseño más habitual de esta técnica es un análisis en dos tubos con dos primers: uno normal y otro mutante en reacciones separadas junto con los primers control. (Reacción en cadena de la polimerasa. Es.wikipedia.org, 2017)

La reacción de cadena en la polimerasa (PCR) alelo especifica es la técnica de genética molecular utilizada para identificar a los caballos reproductores en riesgo de transmitir el gen letal a sus descendientes.  Para analizar el ADN se extrae sangre o muestras de cabello con raíces. (Horse Genetic ,2017).

Esta técnica permite amplificar el ADN, produciendo cantidades relativamente grandes para analizar su secuencia génica, expresión génica. Los materiales para llevar a cabo la reacción vienen incluidos en un KIT con uno o más cebadores de oligonucleótidos (cadenas cortas de nucleótidos), tampón de reacción de PCR, enzima de ADN polimerasa, materiales de análisis de electroforesis en gel e instrucciones para llevar a cabo reacciones de PCR. (Metallinos et al. 2002)

Descripción de la técnica:

En este caso es un método para identificar un gen del receptor de endotelina B de tipo salvaje y la mutación, amplificando una porción del gen del receptor de endotelina B de una muestra biológica de caballo usando cebadores/primers denominados SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 13, SEQ ID NO: 14 y SEQ ID NO: 15 en reacciones de amplificación en las que da como resultado la generación de polinucleótidos de 174, 105 y 90 bp. (Metaliinos et al. 2002).

figura 3 primers

Figura 3: grupo de primers que se utilizaron para llevar a cabo la técnica PCR alelo específica. Fuente: patente US 6372900 B1 – Horse Endothelin-b Receptor Gene And Gene Products The Lens

La Figura 4 muestra la orientación y posición de los cebadores usados en un ensayo de reacción en cadena de la polimerasa (PCR) para detectar la mutación de dos pares de bases asociada con el Síndrome Overo Letal Blanco. Las flechas indican el extremo 3 ‘ de cada cebador. El recuadro alrededor de las bases TC-AG, muestra la diferencia de secuencia de dos pares de bases entre el caballo de tipo salvaje y el ADN de caballo blanco letal.

figura-4.jpg

Figura 4: Esquema de la secuencia y los primers u oligonucleótidos usados para la amplificación en una PCR alelo específica. Fuente: patente US 6372900 B1 – Horse Endothelin-b Receptor Gene And Gene Products The Lens.

figura-5.jpg

Figura 5: muestra los resultados de una reacción de PCR realizada en un gel de poliacrilamida al 12% y teñida con bromuro de etidio. Fuente: patente US 6372900 B1 – Horse Endothelin-b Receptor Gene and Gene Products The Lens

En la Figura 5 observamos el carril 1 que es el producto de PCR de una muestra de caballo heterocigota; el carril 2 es el producto de PCR de la muestra de caballo de potro blanco letal y el carril 3 es el producto de PCR de una muestra homocigótica de caballo salvaje.
Se puede observar que cada carril tiene el control de 174 pares de bases para la reacción de PCR resultante de la amplificación con los cebadores E1.F y E1.R. Los carriles 1 y 2 tienen el producto específico blanco letal de 105 pares de bases resultante de la amplificación con los primers lw2. F y E1.R. Los carriles 1 y 3 tienen el producto específico de tipo salvaje de 90 pares de bases resultante de la amplificación con los cebadores wt2.F y E1-2.F.
( Patente US 6372900 B1 – Horse Endothelin-b Receptor Gene And Gene Products The Lens).
En conclusión se puede distinguir un producto del alelo blanco letal de 105 pb y alelo tipo salvaje de 90 pb. Por lo tanto los portadores del alelo del potro letal blanco pueden identificarse fácilmente por PCR.

Aplicaciones más importantes de esta técnica: detectar alelos de un gen normal y mutado (enfermedades hereditarias), portadores (individuos que presentan un fenotipo normal, pero son capaces de transmitir a su descendencia un carácter indeseable que los predispone a padecer una patología). Por lo general este carácter sigue un modelo de herencia simple recesiva, de tal modo que solo las homocigotas recesivas presentan el fenotipo indeseable. (Técnicas de biología molecular, 2008)

Modo de transmisión a la descendencia:

La herencia del gen se caracteriza por ser:

  • Autosómica recesiva
  • Expresividad variable
  • Es Letal
  • Penetrancia incompleta

Fuente: (the “genetics”of beeding horse journals, 2013).

capture-20171120-204132

Figura 6: Esquema de modo de herencia del gen overo letal blanco. Fuente: (Santschi et al.,1998)

El apareamiento de dos overos heterocigotos dará como resultado promedio un 25 % de potros con el gen letal overo blanco, esto quiere decir que hay una probabilidad de 1 en 4 de que nazca un overo blanco letal, los demás descendientes serán overos de color sólido o heterocigotos.

Los potros afectados son homocigotos para el gen Lys (Lys 118/Lys 118) y los portadores son heterocigotos (Ile 118/Lys 118).

La incidencia de heterocigotos OLWS es muy alta, mas de 94% en caballos marco overo muy blanco y mezclas de marco overo. Un 21% de incidencia de heterocigotos OLWS blancos con patrones de color incluyen al tobiano, sabino. (Santschi et al; 2001).

Se recomienda cruzar caballos sólidos con overos que dan como resultado potros sólidos y overos en igual número sin aparecer potros con el gen letal. Ocasionalmente los caballos sin patrones apreciables de manchas corporales han engendrado potros con LWO (letal White overo) incluida la raza cuarto de milla. Algunos caballos que llevan el gen overo letal blanco pueden tener poco o ningún color blanco en ellos. (lethal white overo horses, 2017)

Debido a esto no se puede deducir el genotipo necesariamente a partir del color del pelaje. (Metallinos et al., 1998)

Prevención y control:

  • Principalmente un diagnostico PCR  dirigido a todos los overos de cuadro y sus descendientes.
  • Pelajes similares como: tobiano, pintado.
  • Prevención en la adquisición de un ejemplar equino

Conclusión:

Concluimos que conocer la genética del caballo nos sirve para su mejoramiento ya que los genes son como si fueran piezas de un código que indica cómo se va a construir molecularmente un organismo y su funcionamiento. Además debemos recordar que los trastornos genéticos van a ser heredados y que a simple vista no podemos diagnosticarlos ya que los pelajes pueden resultar engañosos, para ello es necesario conocer el árbol genealógico del animal o realizar una técnica de diagnostico molecular (PCR),  la cual está a nuestro alcance en Argentina solo que debemos mandar a sintetizar los primers específicos y contar con la infraestructura necesaria para realizarlo.

A lo largo de esta investigación podemos afirmar que el síndrome overo letal blanco es una enfermedad genética a tener en cuenta sobre todo en caballos de la raza cuarto de milla, pese a las excepciones ya nombradas en otras razas, siendo de pronóstico grave y sin tratamiento que termina en la muerte del potrillo entre las 12-24 horas aproximadamente luego de su nacimiento.  Si bien la bibliografía nos lleva a casos de otros países debemos prever la posibilidad de que suceda en Argentina y saber actuar al respecto.

Con estas herramientas de diagnostico podemos proveer información acerca del gen letal para criadores y haras con el fin de prevenir el nacimiento indeseado de potrillos con este síndrome y además a las personas dispuestas a adquirir un ejemplar. Como parte de nuestra formación en medicina veterinaria creemos imprescindible el asesoramiento para evitar pérdidas.

Bibliografía:

·         Horse Genome Project. (2017). Uky.edu. Retrieved 24 October 2017, from http://www.uky.edu/Ag/Horsemap/

·         Finno, C., Spier, S., & Valberg, S. (2009), Equine diseases caused by known genetic mutatios. The Veterinary Journal, 179(3), 336-347.doi:10.1016/j.tvjl.2008.03.016

·         Santschi, E., Purdy, A., Valberg, S., Vrotsos, P., Kaese, H., & Mickelson, J. (1998). Endothelin receptor B polymorphism associated with lethal white foal syndrome in horses. Mammalian Genome, 9(4), 306-309. doi:10.1007/s003359900754

·         Lethal white overo horses. (2017). Horse-genetics.com. Retrieved 24 October 2017, from http://www.horse-genetics.com/overo-horses-LWO.html (Overo lethal white syndrome (OLWS) : Horse : University of Minnesota Extension
·         Overo lethal white syndrome (OLWS) : Horse : University of Minnesota Extension. (2017). Extension.umn.edu. Retrieved 24 October 2017, from https://www.extension.umn.edu/agricult)
·         Horse Genome Project. (2017). Uky.edu. Retrieved 24 October 2017, from http://www.uky.edu/Ag/Horsemap/hgpd
·         lethal white overo horses. (2017). Horse-genetics.com. Retrieved 24 October 2017, from http://www.horse-genetics.com/overo-horses-LWO.html
·         (Overo lethal white syndrome (OLWS) : Horse : University of Minnesota Extension (2017). Extension.umn.edu. Retrieved 24 October 2017, from https://www.extension.umn.edu/agricult
·         TÉCNICAS DE BIOLOGÍA MOLECULAR. (2008). Desde Mendel hasta las moléculas
·         Patente US 6372900 B1 – Horse Endothelin-b Receptor Gene And Gene Products The Lens. (2017). The Lens.
·         EDNRB endothelin receptor type B [Equus caballus (horse)] – Gene – NCBI. (2017). Ncbi.nlm.nih.gov
·         Bellone, R. (2010). Pleiotropic effects of pigmentation genes in horses. Animal Genetics, 41(s2), 100-110.
·         Danika Metallinos, Portola Valley, California (EE. UU.); Jasper Rine , Moraga, California (EE. UU.); y Ann Bowling, Davis, California (EE. UU.), 2002

Enferemedades raras y epigenética

La epigenética desde hace uno años, ha sido objeto de profunda investigación. Son cambios en la regulación de la expresión de los genes, que se dan por modificaciones químicas del ADN (por ejemplo : metilaciones). Algunas enfermedades raras son de las estudiadas. Les dejo un video del Prof. Manel Esteller. Director del Programa de Epigenética y Biología del Cáncer del Instituto de Investigación Biomédica de Bellvitge (IDIBELL)

Fuente: Una de cada cuatro enfermedades minoritarias presenta alteraciones de un gen epigenético.

Para saber más y leer sobre este tema: la entrevista completa aquí

Ganador 1ra. Mención Premio UBA 2017

 

BANNERS_2017-BLOG

Hola a todos los lectores; nuevamente el Blog ha sido distinguido con la 1ra. mención a de los Premios UBA a Edublogs en la categoría Individuales Universitarios o terciarios.

El premio UBA tiene como objetivo: reconocer el uso de las nuevas tecnologías, en la divulgación de contenidos culturales y científicos como, también, en su aprovechamiento como herramienta de apoyo en el proceso de enseñanza – aprendizaje en un contexto educativo, en 2012 se incorporó al Premio UBA a la divulgación de contenidos educativos en medios periodísticos nacionales, la categoría “Edublogs”. El de este año ya ha sido asignado. Les dejo la noticia de todos los ganadores: aquí: Ganadores del premio UBA 2017

Es honor que este Blog ya haya sido distinguido como ganador en 2012, recibió 2da mención en 2013, 2014 y 2016 y ahora por 5ta vez, 1ra mención. Sin dudas un honor para mí que no sería posible sin el apoyo de los lectores y usuarios en general del Blog (docentes de nivel medio, de universidades y todo tipo de estudiantes o personas ávidas de conocimientos, en especial mis alumnos que han hecho trabajos maravillosos que he tenido el placer de compartir aquí mismo con todos los lectores.

La entrega de premios se realizará el 11 de diciembre, como siempre en el Centro Cultural Rojas. Ya compartiré fotos con todos

Gracias a todos y a María Pía que se inicia conmigo en este camino!!!

Saludos y a festejar!!!

¡¡4 millones de visitas!!

Blog 4 millones.png
No puedo creer, que ya hayan hecho click 4 millones de veces en este Blog, de esas muchas no habrán conducido a nada, pero significa que muchas muchas otras habré podido ayudar un poco a alguien que buscaba información. Así que mil gracias a todos Uds: Los lectores y usuarios de este Blog, ¡¡ que me ha dado tantas satisfacciones!!!

Gracias

Gaby

Actividad de aprendizaje de Marcadores Moleculares: Detección de un defecto genético en bovinos mediante pruebas de ADN

Introducción: El conocimiento del genoma bovino y la utilización de marcadores de ADN han permitido conocer el origen de algunas enfermedades hereditarias y desarrollar técnicas de diagnóstico precoz. Mediante el aislamiento de ADN a partir de muestras nucleadas y técnicas de amplificación in vitro y digestión con enzimas de restricción se puede diagnosticar si un animal es portador de un gen letal o mutante para determinadas características. En la actualidad es posible estudiar enfermedades hereditarias del ganado bovino lechero como la deficiencia de adhesión leucocitaria bovina (BLAD).

La deficiencia en la capacidad de unión de leucocitos bovinos a los antígenos, más conocida como BLAD (Bovine Leuckocyte Adhesion Deficiency), es causante de la muerte de animales de la raza Holstein a los pocos meses de nacer (de 2 a 8 meses) debido a una susceptibilidad aumentada a la acción de agentes infecciosos. Su principal característica es ser una enfermedad autosómica recesiva que puede ser transmitida a la descendencia.

Se conoce la secuencia del gen normal que codifica para la subunidad β de las integrinas de la proteína bovina CD18 y se ha identificado el alelo bovino CD18 defectuoso.

La amplificación del ADN mediante reacción en cadena de polimerasa (PCR) específica para dicho locus, y posterior digestión del fragmento amplificado (101 bp) en forma separada con las enzimas de restricción Taq I y Hae III, permite visualizar en gel de agarosa al 4% los fragmentos de restricción.

En base al esquema de la Fig. 1, completar el cuadro 1 con el tamaño de los fragmentos de restricción esperados para muestras obtenidas de animales sanos (TL), portadores (BL) y enfermos (BLAD).

Patron de restricción alelos BLAD.jpg

        Figura 1. ADN amplificado y efecto de la digestión con enzimas de restricción

 

Cuadro 1. Patrón de las bandas de los fragmentos de restricción (pb) posterior a la digestión con enzimas Taq I y Hae III.

Tabla para completar ejercicio 1.jpg

 

ACTIVIDAD RESUELTA

La amplificación por PCR tanto del gen CD18 normal y su alelo defectuoso resulta en un fragmento de 101 pares de bases (pb). Sabemos, además, que hay tres genotipos/fenotipos posibles:

  • TL/TL= homocigota (Normal);
  • TL/BL= Heterocigoto (Normal, portador); 
  • BL/BL= Homocigoto (enfermo)

Fig 1 Resoluc.jpg

esquema de restriccion

Por lo que sí, posterior a la amplificación, el producto de 101 pares de bases se somete a digestión con Hae III, el alelo BL se corta en 3 fragmentos: 46, 19 y 36 pares de bases. En cambio, el alelo normal, TL, solo se corta en 2 fragmentos: 65 y 36 pares de bases.

Imagen1

Por lo que sí, posterior a la amplificación, el producto de 101 pares de bases se somete a digestión con Taq I, el alelo BL se corta en 2 fragmentos: 84 y 17 pares de bases. En cambio, el alelo normal, TL, solo se corta en 3 fragmentos: 52, 32 y 17 pares de bases.

En base al análisis previo de cómo se fragmentan cada uno de los alelos con ambos tipos de enzimas, podemos completar el Cuadro 1.

Cuadro 1. Patrón de las bandas de los fragmentos de restricción (en pares de bases) posterior a la digestión con enzimas Taq I y Hae III.

cuadro 1 resuelto.jpg

Recordar que las bandas migran en el gel de agarosa en función de su peso: Las de mayor pesa se ubican en la parte superior del gel, o lo que es lo mismo, más próximos al pocillo de siembra. Recordar sembrar un marcador de Peso Molecular que permita identificar el tamaño de las bandas.

Como ejemplo, se explica en detalle como completar las columnas 2, 3 y 4, en la que se usa Taq I.

  • Un individuo homocigota normal, es decir, genotipo TL/TL: de cada alelo se amplifica idéntica secuencia, por poseer copias idénticas del gen, por lo que la digestión del ADN dará solamente las bandas de tamaño: 52, 32 y 17 pares de bases.
  • Un heterocigota portador, es decir, genotipo TL/BL: de cada alelo se amplifica distinta secuencia, por lo que la digestión del ADN dará una mezcla de las bandas obtenidas de la digestión del alelo TL (52, 32 y 17 pares de bases) y del alelo BL (84 y 17 pares de bases), es decir, en total se observarán CUATRO BANDAS: 84, 52, 32 Y 17 pares de bases (el fragmento de 17 pares de bases es común a ambos alelos).
  • Un homocigota Enfermo, es decir, genotipo BL/BL: de cada alelo se amplifica idéntica secuencia, ya que es homocigota, por lo que la digestión del ADN dará solamente las bandas de tamaño: 84 y 17 pares de bases.

Videos educativos de alumnos: Heredabilidad y repetibilidad

En esta oportunidad les dejo el video educativo sobre heredabilidad y repetibilidad que hicieron un grupo de alumnas mías de la carrera de Veterinaria de la Univ. Nacional de Río Negro. En este caso ellas son:  Luciana Román, Fiamma Fornies, Daiana Garramuño y Yanina Lorena Ibarra

Felicitaciones chicas!!!! Muy buen trabajo!!!

 

Videos educativos de alumnos: Selección artificial para mejoramiento genético

Mis alumnos de genética de poblaciones han realizado este video educativo sobre selección artificial para el mejoramiento genético.

Sus autores son: Giuliana Scattone, Melina Galfrascoli y Alina Perez.

Muy buen trabajo chicas!!!!!!!!!!

 

 

Monografías de alumnos: Síndrome de stress porcino

Por: Garramuño Fernandez, Daiana Elizabeth.

SÍNDROME DE ESTRÉS PORCINO

(PSS)

 Alumna: Garramuño Fernandez, Daiana Elizabeth.

Cátedra: Genética Básica.

Docentes:

  • Prof Asociada: Iglesias, Gabriela.
  • Ayudante de Primera: María Pía Beker.

Universidad Nacional de Rio Negro. Carrera de Veterinaria.  

Introducción.

Esta monografía tiene como objetivo informar sobre el Síndrome de estrés porcino (PSS) o también conocido como Hipertermia maligna, dando a conocer y detallando características, herencia, frecuencia y métodos de diagnóstico de la misma a partir de recopilación de información de distintos trabajos académicos y artículos.

Definición del Síndrome de estrés porcino y síntomas.

 

portada

La mutación.

La presencia de PSS está dada por el alelo recesivo “n” ubicado en el par de cromosomas autosómicos 6, identificándose tres tipos de genotipos posibles: homocigota dominante NN (normal), heterocigota Nn (portador de la mutación) y homocigota recesivo nn (susceptible a la enfermedad). La mutación se origina de un cambio de citocina por timina en el nucleótido 1843 del gen afectado, esta sustitución provoca un cambio aminoacídico (arginina→ cisteína)[2]en el canal de calcio del retículo sarcoplásmico.

Frecuencia genética.

La frecuencia con que aparece la enfermedad puede variar según las razas y los cruzamientos que se realicen a favor de la economía de la región, siendo más afectada la raza Pietrain con un 97%de los individuos de esta raza, y seguida por 35% en Landrace, 15% en Duroc, 19% en Large White, 14% en Hampshire, 19% en Yorkshire y 16% en razas cruzadas[3].

Diagnóstico.

Existen dos formas de diagnóstico, en la cual una consiste en aplicar Halotano (un gas anestésico), del cual se origina el nombre Hal para el locus del gen afectado, ya que genera la aparición de síntomas de PSS en aquellos animales que en su genotipo posean el alelo recesivo pero no permite diferenciar los individuos homocigota recesivos que pueden sufrir la enfermedad de los que solo son portadores. Para esto existe otra forma de diagnóstico: el PCR-RFLP.

La presencia del alelo recesivo genera la aparición adicional de dos secuencias restriccion en donde puede actuar una enzima de restricción y cortar el ADN en fragmentos de pares de bases. De esta forma los individuos nn presentan los fragmentos 358, 166 y 135 pb, mientras que en los Nn 524, 358, 166 y 135 pb; y en el caso de los NN presentan 524 y 135 pb. El fragmento 135 pb es común en los tres genotipos.

El PCR-RFLP (reacción en cadena de polimerasa – polimorfismo en el largo de los fragmentos de restricción) consiste principalmente en replicar muestras de ADN y posteriormente digerirlo con enzimas de restricción cortando cadenas de nucleótidos que permitan la identificación del gen mutado.

Se comienza con el PCR a partir de muestras de ADN (generalmente sangre) a las cuales se las somete procesos de amplificación que incluyen la utilización de dos primers que flanquean la secuencia de 659pb donde se encuentrala mutación: F-CRC1 5’-TCC AGT TTG CCA CAG GTC CTA CCA-3’ y R-CRC2 3’-ATT CACCGG AGT GGA GTC TCT GAG-5’[4] (siendo F-CRC1 el cebador iniciador y el R-CRC2 el cebador reverso).

Una vez amplificado el ADN se prosigue con la RFLP en donde se utilizan endonucleasas de restricción para que se unan a secuencias específicas y que a partir de una digestión corten distintos fragmentos del ADN. En el análisis de PSS se utiliza la endonucleasa la Alw21I (HgiAI) durante 3 h a 37 °C, con una posterior inactivación de la enzima a 65 °C durante 20 minutos y una desnaturalización con proteínasa K, incubándose a 37 °C durante 1 h.[5] De esta forma se obtiene fragmentos de distintas longitudes que se ven e identifican a partir de una corrida de electroforesis. Para esto se utiliza geles de agarosa y se tiñe la cadena de ADN con bromuro de etidio para poder verlo con luz ultravioleta, el ADN debido al voltaje y el tamaño de la muestra tiende a migrar al polo positivo, pudiendo compararlo con marcadores de peso molecular.

De esta forma se podrán visualizar que fragmentos de secuencias de ADN contiene la muestra.

esquema monografia pss

Tamaño del fragmento a amplificar por PCR y un esquema del patrón de restricción con enzimas en el alelo N (dominante) y el n (recesivo) con la enzima Alw211

esquema monografia pss 3

Cómo se verían los genotipos, homocigota dominante a la Izquierda, homocigota recesivo en el centro y Heterocigota a la derecha en geles de agarosa o poliacrilamida

 

foto 3

Observación de los patrones en geles de poliacrilamida y tinción en sales de plata

foto 2

Conclusión.

Es de importancia conocer como reconocer y diagnosticar el PSS con el fin de evitar su propagación y la muerte prematura de animales como también la pérdida de calidad de la carne y sus subproductos. A si mismo también es beneficioso como parámetro o tema a considerar para la selección de animales que actualmente debido a la búsqueda de características como aumento de peso y musculatura del animal tienden a propagar este síndrome. 

Bibliografía.

http://www.scielo.org.co/pdf/acag/v57n4/v57n4a10

[1]COMA; PIQUER. Avances en nutrición y alimentación animal calidad de carne en porcino: efecto nutrición.  GrupoVallCompanys.XV Curso de Especialización .P.8. https://www.researchgate.net/publication/28180214_Calidad_de_carne_en_porcino_efecto_de_la_nutricion

[2]MONTENEGRO; CASTRO; BARLOCCO; LLAMBÍ. Frecuencia alélica del Síndrome de Estrés Porcino en Uruguay(análisis por PCR-RFLP).Sociedad de Medicina Veterinaria del Uruguay. Año LX Vol. 46  N° 177-178-179-180  Enero – Diciembre de 2010. P.23.http://www.revistasmvu.com.uy/revistas/numero177-180.pdf#page=23

[3]RIOJAS VALDÉZ; CANALES ZAMBRANO; GÓMEZ DE LA FUENTE; DÁVALOS ARANDA; HERNÁNDEZ VIDAL; SALINAS MELÉNDEZ. Frecuencia alélica del síndrome de estrés porcino en Nuevo León, mediante análisisPCR-RFLP.Facultad de Medicina Veterinaria y Zootecnia, UNAM. Volumen 36 Número 3Julio-Septiembre 2005. P.4 http://www.medigraphic.com/pdfs/vetmex/vm-2005/vm053b.pdf

[4]MONTENEGRO; CASTRO; BARLOCCO; LLAMBÍ.Frecuencia alélica del Síndrome de Estrés Porcino en Uruguay(análisis por PCR-RFLP).Sociedad de Medicina Veterinaria del Uruguay. Año LX Vol. 46  N° 177-178-179-180  Enero – Diciembre de 2010. P.24. http://www.revistasmvu.com.uy/revistas/numero177-180.pdf#page=23

[5]MONTENEGRO; CASTRO; BARLOCCO; LLAMBÍ. Frecuencia alélica del Síndrome de Estrés Porcino en Uruguay(análisis por PCR-RFLP).Sociedad de Medicina Veterinaria del Uruguay. Año LX Vol. 46  N° 177-178-179-180  Enero – Diciembre de 2010. P.24. http://www.revistasmvu.com.uy/revistas/numero177-180.pdf#page=23

Monografías de alumnos: Acondroplasia en caninos

Por: Melina, Galfrascoli

Introducción:

La siguiente monografía se realiza para informar las características del trastorno genético “acondroplasia” producido en caninos mediante la recopilación de datos obtenidos de diferentes fuentes.

La acondroplasia es una enfermedad genética autosómica dominante causada por una mutación del gen receptor del factor de crecimiento de los fibroblastos en la que los huesos no crecen hasta el tamaño normal esperado para la raza en cuestión. [1]

Pertenece al grupo de enfermedades denominado condrodistrofias o anomalías en la osificación de los cartílagos. Se caracteriza por la presencia de enanismo desproporcionado, macrocefalia, hipoplasia facial y malformaciones vertebrales.

Se presentan alteraciones del desarrollo esquelético, las cuales pueden aparecer en forma esporádica en la clínica o formar rasgos característicos de ciertas razas. [2]

Desarrollo:

Normalmente, durante el desarrollo fetal y el crecimiento del cachorro, los tejidos cartilaginosos se convierten en huesos excepto en lugares como la nariz y orejas. En perros con acondroplasia este proceso se desarrolla de manera anormalmente lenta, sobre todo en los huesos más largos, especialmente en brazos y piernas, provocando huesos cortos y baja estatura.

El crecimiento de los huesos se produce a partir de los extremos del mismo y lo hacen de acuerdo a un proceso genéticamente determinado por células llamadas condrocitos. Estas células, se alojan en el cartílago de las epífisis de los huesos, de manera más precisa en las placas de crecimiento, y se van multiplicando organizándose en columnas, luego se hipertrofian y mueren dejando el espacio para que se consolide el hueso. Para la correcta maduración de los condrocitos, poseen unas moléculas que evitan que pasen de un estado a otro prematuramente. Estas moléculas son:

  • la proteína relacionada con la hormona paratiroidea (PTHrP) que es la encargada de evitar la hipertrofia y permitir que los condrocitos se sigan multiplicando;
  • Indian hedgehog Ihh), es la molécula que se encarga de permitir que la PTHrP se siga produciendo y también estimula su multiplicación;
  • FGF (factor de crecimiento de fibroblastos, del inglés “fibroblast growth factor”) del cual depende el correcto desarrollo del hueso, cuyo receptor se lo denomina FGFR3 (del inglés “fibroblast growth factor receptor 3”.).

El receptor FGFR3 participa en las principales vías que controlan el crecimiento y desarrollo de los huesos. En particular, esta vía es la encargada de frenar la proliferación y diferenciación de los condrocitos. Su importancia en el proceso de formación del hueso se reveló cuando se descubrió que una mutación en el gen que codifica para este receptor era el causante de provocar acondroplasia. [3]

imagen 1

La acondroplasia se hereda como un rasgo autosómico dominante, aunque en la mayoría de los casos se origina por mutaciones de novo con padres sanos. El gen afectado codifica para el receptor 3 del factor de crecimiento de los fibroblastos (FGFR3), este es un receptor tirosina quinasa que participa en la transducción de la señal de varios factores de crecimiento de fibroblastos. [4]

Existen dos mutaciones posibles en la posición 1138 del gen que codifica para FGFR3:

Mutación G1138A, la guanina es sustituida por adenina (en el 98% de casos de acondroplasia es por esta mutación);

Mutación G1138C, se cambia una guanina por citosina, (su frecuencia es aproximadamente el 2%).

En las dos mutaciones, la repercusión en la cadena aminoacidica de la proteína FGFR3  es el cambio del aminoácido glicina por una arginina. [3]

imagen 2

Herencia genética:

La acondroplasia es un trastorno cuya herencia es autosómica dominante, es decir, que para adquirirla, es suficiente con una copia del gen mutado de al menos uno de los progenitores. Sus posibilidades genotípicas y fenotípicas son:

Homocigoto: (G1138A/G1138A), para que se produzca, es necesario que ambos progenitores tengan acondroplasia (heterocigotos, debido a que los homocigotos no sobreviven), las probabilidades de que la descendencia lo presenten es de un 75%.

Heterocigoto: (G1138A/alelo normal), genotipos:

  • Si ambos padres tienen acondroplasia, la posibilidad de que la descendencia sea heterocigota para en trastorno es de un 50%;
  • Si únicamente uno los padres es acondroplasico, también hay un 50% de posibilidades de heredarlo. [3]

imagen 4

Síntomas de acondroplasia canina:

  • Cabeza más grande de lo normal,
  • Prognatismo,
  • Dientes torcidos,
  • Los huesos de los miembros son más cortos y gruesos de lo normal,
  • Pobre crecimiento o falta de crecimiento,
  • Miembros anteriores cortos y arqueados articulaciones agrandadas,
  • Foramen magnum más estrecho de lo normal,

Frecuentemente se asocia a: sordera, paladar hendido, cardiopatías, convulsiones y tienen una esperanza de vida corta.

imagen 3

Las razas más comúnmente afectadas son: Pastor Alemán, Boston Terrier, Pequines, Shih-tzu, Beagle, Cocker Spaniels, Sharpei, Basset Hounds, Bulldog Ingles, Bulldog Francés, terrier escoses, Jack Russell “Pudin”.

En algunas razas la acondroplasia canina se fomenta de manera selectiva, como en el salchicha o Daschund, Skye Terrier y el Corgi gales. [2]

Diagnostico:

La técnica de PCR es empleada para el diagnóstico de esta enfermedad. El producto de amplificación, de 164 bp es sometido posteriormente a digestión enzimática con enzimas de restricción.

El G-1138-A de transición y G-a-C transversión crean nuevos sitios de restricción (SFCI y MspI) en el gen codificante de FGFR3, particularmente en la porción que codifica para el dominio transmembrana. El ADN, una vez digerido, se separa y visualiza en geles de agarosa. También se puede secuenciar el producto amplificado. [5]

Conclusión:

A modo de conclusión, luego de haber investigado sobre la enfermedad hereditaria autosómica dominante, acondroplasia, y al ver que los individuos que la padecen, sufren deformaciones óseas, dificultándoles sus movimientos y trayéndoles conjuntamente a largo plazo problemas, entre las que se destacan principalmente artritis y  además, al asociarse a otras patologías, descritas en la presente monografía, debemos tener cuidado al hacer cruzamientos para que los descendientes no padezcan la enfermedad, que al ser dominante basta con que uno de los progenitores tenga una copia del gen mutado, para adquirir este trastorno.

Desafortunadamente, los humanos han utilizado esta mutación, para crear razas de manera selectiva, con un fin estético, sabiendo que serían propensos a experimentar consecuencias durante la vida del individuo.

Bibliografía:

  1. Richette PBardin TStheneur C., 2007. Achondroplasia: from genotype to phenotype. Joint Bone Spine.2008 Mar;75(2):125-30. Available at: http://www.sciencedirect.com/science/article/pii/S1297319X07002928 [Accessed 9 Nov. 2016].
  2. Veterinaria-online.net. (2014). Acondroplasia canina – Veterinaria Online. [online] Available at: http://www.veterinaria-online.net/2014/01/acondroplasia-canina/ [Accessed 8 Nov. 2016].
  3. wikipedia.org. (2016). Acondroplasia. [online] Available at: https://es.wikipedia.org/wiki/Acondroplasia [Accessed 8 Nov. 2016].
  4. Martínez  J SValdés  JAlonso  R A; Las bases moleculares de la acondroplasia en perros. Revista AMMVEPE [online] Available at: http://www.imbiomed.com/1/1/articulos.php?method=showDetail&id_articulo=10300&id_seccion=17&id_ejemplar=1063&id_revista=4 [Accessed 8 Nov. 2016].
  5. nlm.nih.gov. (2016). [online] Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1801129/pdf/ajhg00028-0015.pdf [Accessed 9 Nov. 2016].
  6. ggc.edu. (2016). Achondroplasia (4p16.3) – GGCWiki. [online] Available at: http://wiki.ggc.edu/wiki/Achondroplasia_(4p16.3) [Accessed 10 Nov. 2016].