Monografías de alumnos. Estimación del valor de cría

Amatta, R. Duque, J. Izaguirre, R. Quevedo, G



Imagen por Giovanna Quevedo

Introducción

En esta monografía se describen y explican los conceptos de valor de cría (VC) y su estimación a través de parámetros poblacionales y análisis estadísticos. El valor de cría se estima con el fin de establecer un ranking de eficiencia productiva de los animales de un rodeo, con el objetivo de mejorar una característica genética eligiendo a los mejores reproductores para la siguiente generación y lograr una mejora genética a lo largo de las generaciones de una población de animales. El valor de cría también va a definir cuanto progresa genéticamente esa población de una generación a otra, midiendo el progreso de la siguiente generación con respecto a la primera, es decir, a través de la diferencia entre la media del grupo seleccionado y la media original  multiplicado por la heredabilidad de la característica

Monografías de alumnos: ESTIMACIÓN DEL VALOR DE CRÍA

El fenotipo (P) de un individuo está determinado por su componente genético (G) y la influencia del ambiente (E) en el que se encuentra, tal que:

P = G + E

A su vez, el componente genético está dado por las variaciones genéticas aditivas (Ga), las de interacciones entre alelos (Gi) y por epístasis (Ge). La influencia del ambiente se puede dividir en ambiente temporal (Et) que son factores de poco alcance en el tiempo (de unos pocos meses) y ambiente permanente (cuando influencian a lo largo de muchos años o por el resto de la vida del animal). Entonces:

P= Ga +Gi + Ge + Et + Ep

Se sabe que la calidad y la cantidad de la producción de un animal está determinada por su expresión fenotípica donde esta se ve influenciada por el genotipo como determinante  de lo que va a ser ese individuo y efectos ambientales, que actúan como condicionantes.

Desarrollo

La mayoría de las características que interesan para la elaboración de productos derivados de animales y de su mejoramiento son de tipo cuantitativas, ya que su variación ocurre dentro de un espectro de medidas continuas  y no con valores concretos. Además estas características cuantitativas trabajan con poblaciones y no con cada individuo en particular, debido a que en cada uno de ellos se da solamente la interacción entre los alelos de un mismo locus (codominancia, dominancia sobredominancia) y la epístasis. En cambio, la fracción genética aditiva de un individuo está dada por su combinación de alelos de características cuantitativas y la suma de todos los genes que intervienen en ella. Si pasaran la mitad a su progenie, la suma de las características cuantitativas de la progenie estará determinada por la del individuo analizado y la de la madre o el padre que se elijan. 
            La expresión de las características cuantitativas está determinada por la influencia positiva o negativa de cientos de genes (carácter poligénico) y no de unos pocos, para ellos puede existir un espectro de fenotipos que cambian de un carácter a otro imperceptiblemente y pueden ser medidos en los individuos. Por ejemplo: peso al destete, producción láctea, peso de vellón, conversión alimenticia, espesor de grasa dorsal, número de individuos nacidos vivos por camada, etc. (4).

Las características cuantitativas tienden a presentar una distribución normal que aparece gráficamente como una curva simétrica en forma de campana, donde el eje horizontal representa valores fenotípicos y el eje vertical representa la frecuencia con que aparecen estos valores en la población.
Con solo un locus y dos alelos influenciando un carácter hay solo tres genotipos posibles con notables diferencias entre sí y distintas distribuciones normales. Al incrementar el número de locus que afectan al carácter, aumentan el número de genotipos y las diferencias entre valores fenotípicos son más pequeñas. Cuanto mayor es el número de locus que influencian el carácter, la curva de distribución de los fenotipos tiende a ser normal, ya que los valores individuales siguen cierto patrón o distribución en la curva (2).

Fig. 1 Distribución genotípica y fenotípica en una población (1).

Por ejemplo, una característica cuantitativa como el área de ojo de bife donde su
h2= 0,36 indica que la calidad de la carne de la res va a presentar mayor rendimiento en el gancho al tener mayor musculatura, además de presentar una correlación negativa con el engrasamiento, por lo que se desea llegar a un equilibrio entre estos.
Si en una población de novillos y vaquillonas se mide el total de cm2 de su área del ojo de bife, las distintas mediciones van a tomar una distribución normal tal como indica la curva color gris de la fig. 1, debido a que todos los alelos están distribuidos aleatoriamente entre todos los individuos. Sin embargo, si separamos a los animales según valores extremos, es decir, quienes presenten el mayor valor, el menor valor y los valores intermedios para ésta característica, se pueden llegar a obtener subpoblaciones que también presentan una distribución normal y cuyos extremos van a interponerse entre sí, como evidencian las curvas naranjas en la fig. 1.

Cuando se utiliza una población de animales para la producción de bienes o servicios para el beneficio económico del productor, se tiene en cuenta la expresión fenotípica de determinados genes presentes en cada animal. Estos genes que son los responsables de esos fenotipos llevan la información necesaria para determinar la aptitud de cada individuo para el rasgo que va a llevar a la producción que nos interesa mantener o mejorar. El ambiente influencia de distinta manera al genotipo para determinar la expresión fenotípica, lo que quiere decir que el lugar donde esté ubicada esa población de animales puede favorecer o limitar la expresión de dicha combinación genética. Además, las distintas condiciones ambientales a lo largo del tiempo hacen que se exprese un rango de fenotipos posibles, los cuales pueden diferir de un individuo a otro haciendo difícil saber si las diferencias fenotípicas entre ellos son debidas a su variante genética o ambiental. Según lo anterior, en éste tipo de variables el ambiente toma un papel muy importante (11).
           
            La cría ganadera, y de cualquier animal de producción de hecho, requiere variabilidad dentro y entre poblaciones si lo que se quiere es mejorar los caracteres de interés. Esta variabilidad se puede lograr cambiando las frecuencias de alelos deseables dentro de la población mediante un programa de mejoramiento genético como la combinación de los procesos de selección de los animales y de los sistemas de apareamiento (10). Se debe tener en cuenta el valor genético aditivo, que es la suma de los efectos de los alelos del mismo locus y el único que se hereda, es decir, el único que se transmite a la descendencia. El valor genético de un individuo es la sumatoria de los efectos individuales (efecto aditivo) de cada uno de estos genes (9).

Dependiendo de la necesidad de cada productor el pasar de un sistema productivo de alto insumo a otro de bajo insumo va a favorecer a razas distintas y a características distintas dentro de cada una. De modo más general, la creciente importancia de la selección genética se atribuye a factores como el bienestar animal, la protección medioambiental, la calidad distintiva de un producto, la salud humana y el cambio climático, exigiendo que se incluya una gama más amplia de criterios en los programas reproductivos (10).
Partiendo de una población de animales en una región determinada, lo primero que se debe conocer es el promedio de los valores fenotípicos de ese carácter cuantitativo en dicha población, con el fin de mantenerlo y/o mejorarlo a lo largo de las generaciones. Dicho promedio poblacional se calcula realizando la sumatoria de los valores de ese carácter en cada uno de los individuos constituyentes de la población y dividiendo sobre la cantidad total de éstos. Este valor indica el punto central para realizar una curva de distribución normal, en el cual se puede determinar la desviación estándar que se define como la diferencia del valor de cada individuo con respecto a la media de la población. A este desvío se lo puede elevar al cuadrado para calcular la varianza (Fig. 2).

Fig. 2. Fórmula de varianza fenotípica (11).


            El valor de cría es algo que se puede estimar una vez que se conoce la heredabilidad y la superioridad fenotípica para saber con qué animales del rodeo conviene quedarse como reproductores elaborando un ranking. Teniendo en cuenta el valor de cría de todos los animales se puede guiar al propietario de la población para que decida que individuos seleccionar (el ranking pondrá 1ro a los mejores individuos como futuros padres de la siguiente generación). Como es imposible saber el potencial genético exacto de un animal, lo que se busca es estimarlo mediante un Valor de Cría Estimado (VC; en inglés EBV), y se expresa siempre en relación a la media poblacional (9).

            El principio de la estimación del valor genético se basa en la regresión (3). El coeficiente de regresión, en combinación con la superioridad fenotípica de los animales en lo alto del ranking, predice mejor la superioridad  genética o el verdadero valor de reproducción (9). Esta es la forma precisa de estimación para elegir individuos mediante índices de selección. Sin embargo si se tienen buenas estimaciones de heredabilidad, también puede calcularse de modo más práctico que haciendo regresión.
            Cuando se aplican los VC para influenciar en decisiones de selección, es importante encontrar el equilibrio entre los diferentes grupos de características y enfatizar las que son de mayor importancia para la población, los marcadores genéticos y el entorno. Si bien proporcionan la mejor base para comparar el mérito genético de los animales criados en diferentes entornos y condiciones de manejo o ambientales solo pueden usarse para comparar animales dentro del mismo análisis. El valor de cría también nos va a determinar cuánto progresa genéticamente esa población de una generación a otra a lo largo de los años.

VC = h2 (Pi – µ)


h2: proporción de variación explicada por el valor de reproducción.

h: correlación entre el valor reproductivo y el fenotipo.
(Pi – µ): desviación de los individuos (Pi) de la media (µ). (3)

            Los VC se expresan para cada rasgo con una unidad de medida en particular (kg, lt, µm), se muestran positivos o negativos entre la diferencia genética de un animal y la base genética con la que se compara. También se puede definir como el doble de las desviaciones promedio de la progenie de un genotipo con respecto a la media de la población, siempre y cuando dicho genotipo haya sido apareado con una muestra al azar de la población.


El VC puede expresarse como valor absoluto:

VC = 2 * (media hijos) – media poblacional
VC = 2(μh)- μ0

o como desviación respecto de la media de la población:

VC = 2 * (media hijos – media poblacional)

VC = 2(μh – μ0). (7).

El valor fenotípico para un carácter, también llamado mérito individual, es su rendimiento en  relación con determinado carácter y con respecto a la media poblacional. Está compuesto por el valor genotípico y la desviación ambiental, en donde el genotipo atribuye cierto valor al individuo y el ambiente causa una desviación de dicho valor en una u otra dirección (5).  

F= μ + G + M

F= valor fenotípico.

μ= media poblacional para el carácter.
G= valor genotípico.

M= efecto ambiental.

A modo de ejemplo (fig. 3) en un rodeo donde la media poblacional es de 200 kg, se mide el peso al destete como carácter cuantitativo en 3 terneros (A, B y C). Los valores genotípicos de cada uno son 5 kg para el A, 20 kg para el B y 10 kg para el C, con una influencia del ambiente de  5 kg, 40 kg y -30 kg respectivamente. Estos valores son específicos de este carácter para cada animal.

Se determinó que el mérito individual en:
Toro A: 210 kg. Está por encima de la media gracias a que posee un valor genotípico de +5 kg y un buen ambiente.
Toro B: 260 kg. Su ventaja de +60 kg con respecto a la media es debido al valor genotípico y además tuvo un mejor efecto ambiental que el promedio quizás por la influencia de la madre que fue buena lechera ya que la producción láctea tiene correlación positiva con el crecimiento del ternero hasta su destete.

Toro C: 180 kg. Posee una desventaja de -20 kg con respecto a la media a pesar de que tiene un buen valor genotípico porque afrontó condiciones ambientales desfavorables (mala nutrición o enfermedad).

Figura 3. Representación gráfica del peso al destete de tres terneros, con influencia genotípica y ambiental.

Este es un ejemplo hipotético para explicar gráficamente, en realidad no se conoce el valor genotípico ni el efecto ambiental en un individuo, solo se puede medir directamente el valor fenotípico.

Aplicación del valor de cría: selección genética


            Una herramienta de conocimiento para poder elegir un buen reproductor de acuerdo al objetivo que se quiere alcanzar, al medio ambiente, mercado, trabajo, etc., es la selección genética, que permite presentar avances permanentes y continuos, teniendo en cuenta los caracteres de relevancia económica tales como fertilidad, crecimiento y área del ojo de bife.

Para elegir al mejor reproductor se estima la heredabilidad de ese carácter en la población. Esta varía de 0 a 1, en donde se determina que una heredabilidad cercana a cero indica que casi toda la variabilidad en un rasgo entre los animales se debe a factores ambientales, con muy poca influencia de las diferencias genéticas, y las cercanas a uno casi toda la variabilidad en un rasgo proviene de diferencias genéticas con muy poca contribución de factores ambientales (6).

            La heredabilidad es un concepto estadístico (representado como h²) que describe qué parte de la variación en un rasgo dado puede atribuirse a la variación genética. Es un rasgo específico de una población en un entorno determinado y puede cambiar con el tiempo a medida que cambian las circunstancias (6). Este parámetro genético indica el grado en que la superioridad de los padres será observada en su descendencia. Para realizarla correctamente, se calcula mediante correlación o regresión los cuales requieren de mucha información, no solo un registro fenotípico de cada individuo de la población sino también tener en cuenta si hay o no parentesco entre esos individuos ya que este influye mucho en la estimación de la heredabilidad por la poca variabilidad. Por ello se hace con análisis de pedigrí porque hay características que no se pueden medir en todos los individuos por igual (ej.: en el toro la producción de leche debe medirse en las hijas, madres o abuelas, cuanto más cercano es el parentesco más precisa es la estimación de heredabilidad).

En la figura 4 se observa como se refleja el progreso genético en una población mediante la selección de individuos con valores en el extremo positivo de la curva de una población original, comparando caracteres con distinta heredabilidad. Cuando la heredabilidad del carácter es 0, no existe progreso genético alguno, la influencia completa está dada por el ambiente. Cuando la heredabilidad es 1, el progreso es total hacia la media de los individuos usados como reproductores y no existe influencia alguna por parte del ambiente. Por último, cuando la heredabilidad toma valores entre 0 y 1, el progreso genético de la población es más gradual en dirección hacia los individuos seleccionados.

Fig. 4. Indica que h2 es siempre positiva (de 0 a 1). (11).

En una curva normal se eligen los individuos que están a la derecha o a la izquierda de la curva según lo que se quiera seleccionar. Por ejemplo, si se quiere ganar un menor desarrollo de grasa convienen los que están a la izquierda y si se quiere ganar litros de leche convienen los animales que están a la derecha de la curva. No sirve quedarse con el promedio porque se vuelve a hacer lo mismo en la siguiente generación y el objetivo es tender a quedarse con los mejores.

La heredabilidad en este caso permite establecer un ranking de productores  al multiplicarla por la diferencia del valor fenotípico con respecto a la media de cada animal.

 Diferencias esperadas de progenie (DEPs)

Los DEPs expresan las diferencias previsibles en la próxima generación a partir del uso de un reproductor controlado al que se le estima el valor genético.
            Este análisis es la herramienta disponible más precisa para mejorar genéticamente una característica ya que nos aporta una predicción del comportamiento productivo que se esperaría de los hijos de un progenitor en ese determinado carácter, en comparación con los hijos de otros progenitores que son sometidos a la misma evaluación. Este no es indicador de un buen o mal comportamiento productivo, ya que esto último también está determinado por las condiciones ambientales. Se expresan como un valor positivo o negativo en la unidad en la que se esté midiendo dicha característica y están siempre acompañados de un valor de confiabilidad. 

Se puede decir que es la mitad del valor de cría predicho (9).

La confiabilidad o precisión indica que tan aproximada es la diferencia esperada de progenie respecto al valor genético real del animal. Entre más información se utiliza en el análisis, mayor es el valor de confiabilidad para esta característica y dependiendo de la cantidad de información el resultado varía entre 0 y 1. Entre más alta la confiabilidad menor es el cambio que se esperaría en el DEP al agregar información de más descendientes de un animal (8). 

La repetibilidad también le da confianza al productor siendo una medida de fortaleza de la relación entre registros repetidos de un mismo carácter en un individuo, que se utiliza para determinar qué tan eficiente es ese carácter en la generación presente de animales en base a registros previos.

 Fig. 5 Por Semenx beef Uruguay (catálogo de venta de bovinos)

                                                                                                                                               

En un catálogo (Fig. 5) para elegir un reproductor macho es importante conocer el DEP de cada uno ya que es un buen método para compararlos fácilmente entre sí y determinar qué animal conviene seleccionar. Esto se realiza en los machos debido a que son capaces de preñar muchas hembras, es decir, transmitir su superioridad fenotípica a toda la descendencia.

Conclusión


            El valor de cría nos permite seleccionar a los futuros reproductores para una determinada característica de importancia para la producción y lograr una mejora genética generación tras generación con el fin de satisfacer las necesidades y llegar al objetivo de cada productor a través de caracteres cuantitativos de mayor importancia económica, ya que estos datos le brindan confiabilidad. Es importante que el productor a la hora de seleccionar sus reproductores tenga en cuenta los catálogos de venta ya que estos son de confianza y no solo los caracteres fenotípicos que tal vez no son tan acertados a la hora de elegir un reproductor. Además, si se eligen más de una característica a mejorar, la selección debe ser independiente una de otra, ya que mientras menos caracteres se elijan, mayor y más rápido va a ser el progreso genético en su población.

            Por otra parte, en cualquier población que se trabaje, el ambiente debe presentar las mejores condiciones posibles para los animales con los que se trabaja, es decir, el productor debe procurar que todas las necesidades de los animales estén cubiertas, tengan acceso a alimento adecuado y suficiente, agua limpia, cuidados médicos, estén libres de estrés, etc. ya que, como se menciona al principio, cuanto mejores sean las condiciones ambientales, mejor se van a expresar las características genéticas de éstos animales y mejor se va a notar la diferencia entre los individuos rankeados. A su vez, la/s raza/s que debe elegir el productor deben estar cómodamente adaptadas al clima existente en su chacra/campo y consigan satisfacer sus necesidades en ésta, ya que si tenemos una raza adaptada a las condiciones de temperatura, humedad, alimento específicas de un clima en particular y la colocamos en otro clima que no cumpla esas condiciones, por más que el productor se esfuerce, los animales no van a alcanzar su máximo potencial productivo. 

Bibliografía

  • Barbadilla, A. Tema 9: Herencia cuantitativa.
  • Cappello Villada, J. S. Diplomatura Superior en Producción Animal de Rumiantes (2018). Fac. de Cs. Veterinarias UNNE – INTA Mercedes Dezetter, C. Genetic evaluation: Estimated breeding value/Definition. Genetics of dairy production
  • Genética Cuantitativa (Guía introductoria al tema). Facultad de Ciencias Veterinarias [Apunte de cátedra]. Universidad Nacional del Centro de la Provincia de Buenos Aires.
  • Genghini, R.; Bonvillani, A.;Wittouck, P.;Echevarría, A. INTRODUCCIÓN AL MEJORAMIENTO ANIMAL (2002). Cursos de Introducción a la Producción Animal. FAV UNRC.
  • Genetics Home Reference. What is heredability? (2019) US National Library of Medicine
  • Genética de poblaciones. Valor de cría: fundamentos. UBA
  • Iglesias, G. [GabyIglesias]. (2016, Junio 2018) Valor de cría y DEPs (diferencia esperada en la progenie). Recuperado de YouTube
  • Kor Oldenbroek and Liesbeth van der Waaij, 2015. Textbook Animal Breeding and Genetics for BSc students. Centre for Genetic Resources The Netherlands and Animal Breeding and Genomics Centre, 2015. Groen Kennisnet.
  • La situación de los recursos zoogenéticos mundiales para la alimentación y la agricultura (2010), editado por Barbara Rischkowsky y Dafydd Pilling. Roma Traducción de la versión original en inglés, 2007)
  • Robledo, G. Modelo Genético y Tipo de Caracteres  (2013). Cátedra de genética – Curso de genética de poblaciones. Facultad de ciencias veterinarias [Apunte de cátedra]. Universidad de Buenos Aires, Argentina.

Monografías de Alumnos: CRISP

Su aplicación en Mosquitos causantes de la Malaria

AUTORES: Sanchez, Martín, Shaide Chucair Palabras Clave: Malaria, Mosquito Transgénico, CRISPR-Cas9, Deriva Génica. 

Resumen: En el presente escrito se evalúan, dentro de un marco teórico, cómo se podrían modificar genéticamente los mosquitos portadores del agente causal de la malaria, un protozoario del género Plasmodium, utilizando el método de CRISPR-Cas9 sobre los insectos dentro del laboratorio, su posterior liberación en el medio ambiente, y su efectividad e impacto como posible vía para generar una deriva génica dentro de la población de mosquitos salvajes, considerando además los actuales métodos de control de la malaria, tanto los de origen genéticos como  los convencionales.

La malaria, también conocida como Paludismo, en el ser humano, es una enfermedad parasitaria causada por la infección de una o más de las especies del parásito protozoario intracelular Plasmodium ya sean Plasmodium falciparum, ovale, vivax y/o malariae (Heymann ,2011). Es una enfermedad mortal que es causada por dicho Plasmodium y transmitida por la picadura de mosquitos hembra del género Anopheles, los llamados vectores del paludismo.

Según la OMS: P. falciparum es el parásito causante del paludismo más prevalente en el continente africano. Es responsable de la mayoría de las muertes provocadas por el paludismo en todo el mundo. En cambio, P. vivax es el parásito causante del paludismo dominante en la mayoría de los países fuera del África subsahariana.

Se calcula que en 2016 hubo 216 millones de casos de paludismo en 91 países, las muertes fueron de 445 mil personas, lo que es una cifra demasiado alta ya que se trata de una enfermedad prevenible y tratable de manera relativamente fácil, sin embargo, muchas de las áreas afectadas son de recursos extremadamente precarios y bajo constante conflicto civil y militar, lo cual dificulta mucho no solo el alcance de ayuda exterior sino cualquier tipo de intervención interna.

La prevención de esta enfermedad se basa fuertemente en la lucha antivectorial para reducir la transmisión del paludismo. Según la organización mundial de la salud en 2018: “Para el control efectivo del vector, recomienda proteger a toda la población que se encuentra en riesgo de infectarse. Hay dos métodos de lucha contra los vectores que son eficaces en circunstancias muy diversas: los mosquiteros tratados con insecticidas y la fumigación de interiores con insecticidas de acción residual.”

Entre 2015-2017 se realizó la distribución de 624 millones MTI o mosquiteros tratados con insecticida, (principalmente de larga duración), un aumento sustancial con respecto a los 465 millones del 2012-2014. De todos estos, el 82% o 459 millones, fue entregado en la región de áfrica subsahariana. (OMS, 2018)

La malaria es endémica en más de 100 países, especialmente en América Central y del Sur, República Dominicana, Haití, África, Asia (India, Sureste asiático y Oriente Medio) y Pacífico Sur.

En el presente escrito se evalúan, dentro de un marco teórico, cómo se podrían modificar genéticamente los mosquitos portadores del agente causal de la malaria, un protozoario del género Plasmodium, utilizando el método de CRISPR-Cas9 sobre los insectos dentro del laboratorio, su posterior liberación en el medio ambiente, y su efectividad e impacto como posible vía para generar una deriva génica dentro de la población de mosquitos salvajes, considerando además los actuales métodos de control de la malaria, tanto los de origen genéticos como los convencionales.

 Figura 1. Distribución mundial de la malaria. Fuente: OMS, 2010

En el 2017 los países endémicos de Malaria invirtieron 3,1 mil millones de dólares para el control y eliminación de la enfermedad, 2,2 mil millones se gastaron en la región de África seguida por 300 millones en el sudeste asiático, en las Américas 200 millones y el este  Mediterráneo y Pacífico Occidental 100 millones cada uno, a pesar de esta cantidad de inversión no se llega a alcanzar las metas de la ETM (Estrategia Técnica mundial contra la Malaria), esta tiene como objetivo una reducción del 40 por ciento de incidencia en casos de malaria a nivel mundial. Para alcanzar las metas de la ETM a 2030 se estima que la financiación anual para la malaria tendrá que aumentar en al menos 6,6 mil millones por año

hasta el 2020.

“El conocimiento del ciclo de vida de este parásito indica que el estadio más vulnerable del Plasmodium es el ooquiste encontrado en el intestino medio (de sólo cinco ooquistes por insecto), razón que lo convierte en el primer blanco de ataque empleando mosquitos transgénicos que expresen moléculas efectoras antiespasmódicas”.(Noguez Moreno, et al 2017)

A lo largo de los años los avances en la ciencia y tecnología genética gracias a quienes la desempeñan, ya sean investigadores, científicos o genetistas nos ayudan a comprender y hasta poder solucionar mediante el uso de ingeniería genética problemas relacionados a la salud humana y animal.

Los métodos de biología molecular y de las ciencias genómicas generan conocimientos más precisos de la fusión y expresión genética, lo que es fundamental para el entendimiento de la fisiología molecular de insectos y en la generación de MTs (mosquitos transgénicos) para el control de insectos y las ETV (enfermedades transmitidas por vectores).(Noguez Moreno, et al., 2017)

Históricamente dentro de las estrategias utilizadas para el control de enfermedades vectoriales con respecto a la manipulación genética, nos podemos encontrar con una amplia variedad de enfoques y diferentes acercamientos a la problemática. Segun Noguez Moreno,  et al., 2017  estos pueden dividirse en un Control “Clásico” y el uso de Mosquitos Transgénicos o MTs; Así, el primero se enfoca en generar insectos estériles o bien con reproductibilidad reducida por medio de productos químicos o radiación sobre los huevos y luego que estos sean liberados al medio ambiente natural. Si bien este método fue el más utilizado después de la segunda guerra mundial por más de 4 décadas, debido al coste de mantenimiento del equipo, de la mano de obra y de la liberación de los insectos, prácticamente ha quedado en desuso.(Noguez Moreno et al., 2017)

Figura 2: Fuente: Noguez Moreno et al.,2017

El uso de MTs por otro lado cobra impulso con cada nuevo avance en el área de la genética; Pueden encontrarse así los Mosquitos Refractarios, es decir, que expresan una cualidad que los hace inmunes a la infección del agente en si, los Mosquitos Transmisores de Genes Letales de Uno o Dos Componentes, que básicamente consiste en introducir un gen que se comporta como letal (produce la muerte del portador) cuando se encuentra en heterocigosis, los Mosquitos con Fenotipo sin Vuelo, donde se les genera una modificación en su capacidad para volar y son eliminados naturalmente por depredadores o bien no pueden alimentarse ni volar, y por último, pero no menos importante la Deriva Génica o Genéticamente Dirigido (GD por Gene Drive en inglés), donde se fuerza la imposición de la presencia de un alelo sobre otro dentro de una población generando por ende la desaparición de este último.(Noguez Moreno, et al., 2017)

Naturalmente la deriva génica es una fuerza evolutiva que ocurre como un cambio en las frecuencias genéticas debido a un resultado de eventos aleatorios de una generación a la otra, puede ser muy efectiva y marcada en poblaciones pequeñas, además podría resultar en la fijación de un alelo, es decir, que este termine siendo el único presente en la población.

Figura 3. El concepto de genética dirigida (del inglés Gene Drive: GD) lo podemos ejemplificar en un caso hipotético de un transgen que bloquea la transmisión de la malaria (pero que no tiene valor selectivo en la población de insectos). Se podría impulsar el incremento en su frecuencia genética en la población, sustituyendo a los silvestres (sin color) a través de una construcción genética que incluya un gen que proporciona una ventaja selectiva (Gene Drive o GD) (en rojo). Genética dirigida es lo mismo que decir deriva génica.  Fuente: Noguez Moreno, et al., 2017

De manera artificial con el fin de modificar poblaciones; la deriva génica se puede usar  tanto como para que una nueva población de Mosquitos Refractarios reemplace a otra vieja o para la supresión gradual de una especie al generar deriva génica sexual. Los métodos más comunes son los Elementos Medea, (elementos alélicos “egoístas” que se imponen sobre su contraparte al generar la muerte de la cría que carece del elemento), el uso de las Bacterias del Género Wolbachia, (el cual se comporta también como elemento génico egoísta y de carácter simbiótico que puede transmitirse por vía materna) y la aplicación de CRISPR-Cas9, tanto sobre un gen como también sobre la frecuencia sexual dentro de una población.

Figura 4. Fuente: Noguez Moreno, et al., 2017.

La manipulación de la frecuencia de un gen con CRISPR-Cas9 consiste básicamente en introducir dentro de un gen esencial un segmento exógeno con la información que dotaría de inmunidad al individuo contra el agente, así cualquier intento de eliminar esta seccion por parte del sistema natural de reparación del ADN resultaría en la muerte del individuo en lugar de generar una especie de “resistencia”, y si a esto se le suman más segmentos exógenos el proceso de resistencia se vuelve indetectable poblacionalmente.

La manipulación de la frecuencia de un sexo usando CRISPR-Cas9 es una de las estrategias más nuevas, recién introducida en 2016, y consiste en que Cas9 ataque un gen alosómico que reside en uno de los cromosomas sexuales con una incidencia en el nacimiento de machos de casi un 90%, y debido a que estos no son hematofagos, cualquier transmisión de vía salivaria quedaria incapacitada,  además esto facilita la deriva génica ya que solo los machos la producen y no las hembras.

Figura 5.Genética dirigida (GD) utilizando el sistema CAS9-ARN guía. Las ventajas incrementan introduciendo varias unidades de ARN guía, lo que aumenta la frecuencia de corte y dificulta la evolución de alelos resistentes a GD a niveles indetectables. Al elegir sitios diana dentro de un gen esencial, debe ser modificados para hacer un alelo resistente e incluirlo en la construcción para unirlos a la construcción genética que lleva el sistema CAS9-ARN guía, y tanto al gen marcador, como al gen refractario (por ejemplo). Cualquier acontecimiento que elimine los sitios blanco del sistema CAS9-ARN, producirán letalidad en lugar de crear una unidad de alelo resistente, lo que aumenta aún más la robustez de la construcción genética GD y favoreciendo la sustitución poblacional de insectos. Fuente: Noguez Moreno, et al., 2017

La tecnología CRISPR/Cas9 es una herramienta molecular utilizada para “editar” o “corregir” el genoma de cualquier célula. Sería algo así como unas tijeras moleculares que son capaces de cortar cualquier molécula de ADN haciéndolo de una manera muy precisa y controlada. La capacidad de cortar el ADN es lo que permite modificar su secuencia, eliminando o insertando nuevo ADN, se basa en un sistema natural de defensa bacteriano contra los virus bacteriofagos. Estos virus infectan bacterias al inyectarle su material genético, luego este se aprovecha de la maquinaria interna para fabricar otras réplicas de sí mismo, generalmente mata a la bacteria en el proceso. Si la bacteria sobrevive puede utilizar fragmentos del ADN vírico para incluirlo dentro de su propio material genético y así contar con una “copia de seguridad” que permite identificar rápidamente una posterior invasión de ese mismo material. (Ann Ran, et al., 2013)

Figura 6. Ilustración de cómo ingresa originalmente el material genico viral dentro de la bacteria, y los pasos subsecuentes para registrarlo y utilizarlo como propio dentro del sistema defensivo CRISPR. Fuente:Gantz, 2015.

El ADN tomado del virus son segmentos de bases repetidas múltiples veces y a su vez estos fragmentos también se repiten dentro del propio ADN, no suelen ser muy largos y están condensados, por esto se llaman repeticiones palindrómicas cortas agrupadas y regularmente espaciadas o Clustered Regularly Interspaced Short Palindromic Repeats o CRISPR en inglés. (Ann Ran et al, 2013)

“Cuando un virus entra dentro de la bacteria toma el control de la maquinaria celular y para eso interacciona con distintos componentes celulares. Las bacterias que tienen este sistema de defensa tienen un complejo formado por una proteína Cas unida al ARN producido a partir de las secuencias CRISPR. Entonces el material génico del virus puede interaccionar con este complejo, al ocurrir esto el material genético viral es inactivado y posteriormente degradado. Pero este sistema va más allá. Las proteínas Cas son capaces de coger una pequeña parte del ADN viral, modificarlo e integrarlo dentro del conjunto de secuencias CRISPR. De esa forma, si esa bacteria o su descendencia se encuentra con ese mismo virus, ahora inactivará de forma mucho más eficiente al material genético viral. Es, por lo tanto, un verdadero sistema inmune de bacterias”. (ver Figura 6) (Moran, 2015)

Esto puede aplicarse al ADN de eucariotas, con un CRISPR-Cas9 sintético y en un laboratorio, conociendo la secuencia que se desea cambiar, se puede generar un ARN complementario a dicha secuencia y agregarla al CRISPR-Cas9, el cual termina cortando esta sección. Luego pueden ocurrir dos posibles resultados derivados de las dos grandes vías existentes para la reparación del ADN, y estos son la vía de unión de extremos no homólogos, cuya sigla en inglés es NHEJ, que presenta tendencia a errores y la vía de reparación dirigida por homología cuya sigla en inglés es HDR y es la que presenta una mayor fidelidad, así que puede optarse por una u otra dependiendo del resultado que se busque con respecto a la modificación de ese gen.

Figura 7. La edición de genomas a través de ARN guía-CAS9. La nucleasa Cas9 y la guía de ARN, debe ser primero introducida en la célula diana. Esto se logra mediante introducción por ingeniería genética. El ARN guía dirige a Cas9 para unir secuencias de ADN diana. En el blanco se forma una burbuja que debe estar flanqueada por un adecuado motivo adyacente (PAM;Motivo adyacente de protoespaciador), con secuencia NGG, que refiere a que N es cualquier nucleobase seguida de dos nucleobases de Guanina. Sí el ARN guía es idéntica con solo unos desajustes en el extremo 5 ́del espacio de hibridación, Cas9 cortará las dos cadenas del ADN generando extremos romos. Si se suministra con una plantilla de reparación que contiene los cambios deseados y homología a las secuencias a ambos lados de la ruptura, la célula puede utilizar la recombinación homóloga para reparar la ruptura mediante la incorporación de la plantilla de la reparación en el cromosoma. De lo contrario, la ruptura será reparada uniendo los extremos, lo que resulta en la pérdida de algunos nucleótidos y la interrupción del gen. Fuente: Noguez Moreno, et al.,2017

 

La activación de la vía NHEJ ocurre cuando no hay presencia de un molde reparador, así las DSB (Double Strand DNA Break) son unidas dejando “cicatrices” en forma de deleciones o adiciones, es decir, mutaciones. De esta manera se usa la vía NHEJ para producir “knockout” génico sobre secciones indeseables del ADN, al exponer codones de stop de manera prematura.

La activación de la vía HDR, si bien es mucho más precisa, ocurre a frecuencias mucho más variables que NHEJ, y suele activarse naturalmente en células que se están dividiendo, además su eficiencia puede variar dependiendo del tipo de célula y su estado de división, así como del lugar y amplitud del segmento modificado de ADN. La vía HDR produce modificaciones muy puntuales y definidas sobre un locus frente a un molde reparador introducido exógenamente, el cual puede ser la clásica doble hebra de ADN complementario y antiparalelo o una sola hebra de ADN, este último método puede ser útil para introducir mutaciones de segmentos extremadamente pequeños (tan chicos como un solo nucleótido) dentro del genoma, de manera simple y rápida.(Ann Ran, et al., 2013)

Quizás la propiedad más importante es que CRISPR-Cas9 puede no solo cortar, sino que (por medio de modificaciones artificiales dentro del laboratorio) introducir una nueva secuencia de ADN y por lo tanto, nuevos genes dentro de la cadena, permitiendo un gran abanico de alteraciones sobre prácticamente cualquier organismo. En este caso se planteará el uso teórico de CRISPR-Cas9 tipo 2, el cual utiliza crARN (CRISPR ARN asociado), que actúa como guía codificante para ARN, y otro segmento de crARN de trans-activación o trancrARN, el cual facilita el proceso. Cada uno de estos crARN está compuesto de una secuencia de 20 nucleótidos guia.(Ann Ran, et al, 2013).

Un estudio realizado por Gantz, et al., en 2015 estudia o analiza  la modificación de Anopheles stephensi por medio de CRISPR-Cas9 y la producción de MTs, al alterar genéticamente uno de los cromosomas de los machos, luego copiaron el segmento de 17.000 pares de bases al cromosoma homólogo utilizando la vía de reparación HDR de una manera exacta y en un sitio específico del ADN, de esta manera y junto a la deriva génica producida en la naturaleza, se logró una incidencia del 99,5% aproximadamente de la frecuencia del gen sobre la descendencia de la cruza entre los machos transgénicos y las hembras salvajes. En contraste con esto, se encontró que la modificación sólo en las hembras no conlleva al mismo éxito, debido a que los cromosomas no son reparados por la vía HDR, más exacta, sino por NHEJ; Así es como se producen muchas mutaciones en el proceso y por lo tanto, se termina dando una herencia de tipo pseudo mendeliana de los genes modificados, y no tiene el mismo éxito, de esta manera se estima que se podría lograr la erradicación de la enfermedad en unas 10 generaciones de mosquitos, es decir, en un periodo de aproximadamente 1 año. Este modelo que es completamente teórico está basado en el uso exclusivo de mosquitos machos transgénicos liberados al medio ambiente ya que ellos son quienes tienen la posibilidad de generar una deriva génica, aunque hay un cierto aporte por parte de la descendencia de las subsecuentes hembras modificadas hijas de los machos liberados.

Conclusiones y Comentarios Finales:

CRISPR-Cas9 es una poderosísima herramienta para poder moldear al mundo y los animales que lo habitan, pero tiene como limitación que es demasiado nueva y no ha sido testeada en el campo lo suficiente, de esta manera no termina habiendo una respuesta definitiva de si será o no la salvación a todas las ETV y otras enfermedades relacionadas, aun así el futuro necesitará cada vez más nuevas y mejores estrategias para combatirlas, y más si se considera que el presupuesto de la OMS con la ETM debe duplicarse de 3 mil millones actuales a 6 mil millones en menos de un año si se quiere seguir con el plan estimado, es decir, reducir el paludismo en un 40% para el 2030.  Tal vez la deriva génica dada por los mosquitos transgénicos no sea la respuesta, pero todavía es demasiado pronto para decirlo, ya que si bien es fácil quitar una proteína o lípido que es aprovechado por un virus o un parásito, esto es biología, pero nada cumple solo una función ni es simplemente tan fácil, debido a que esa proteína podría cumplir muchas otras funciones importantes en otro lado, así que habrá que considerar los pros y contras, ¿cuáles podrían ser las futuras repercusiones ambientales?, ¿es factible económicamente hablando?, y tal vez más importante, ¿cuánto pesan estos argumentos frente al medio millón de personas que mueren al año?.

Bibliografía

Ann Ran, F., & Scott, D. (2013). Genome engineering using the CRISPR-Cas9 system [Ebook].

Gantz, V. (2015). Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi [Ebook]. California.

Heymann, D. (2013). El control de las enfermedades transmisibles [Ebook] (19th ed., pp. 485-508). Washington DC.

Moran, A. (2015). ¿Qué es la tecnología CRISPR/Cas9 y cómo nos cambiará la vida? [Ebook].

Noguez Moreno, R. (2017). Nuevas estrategias de control vectorial:mosquitos transgénicos[Ebook]. México.

Monografías de alumnos. Estudio de algunas frecuencias génicas en gatos de distintos fenotipos en Choele Choel

Autores:  Arrieta, Macarena; Cruz, Micaela; Moyano, Camila; Ríos, Gimena; Torres, Emilio.
Cátedra de Genética de poblaciones y Mejoramiento Animal, Carrera Veterinaria, Universidad Nacional de Río Negro. Prof. Mag. Med. Vet. Gabriela M. Iglesias y J.T.P: Dra. María Pía Beker

Resumen:

El objetivo de este trabajo fue determinar la variabilidad genética de las poblaciones de gatos domésticos (Felis catus) utilizando genes que codifican la coloración, el diseño y longitud del pelaje en Choele Choel, provincia de Rio Negro, Argentina. Un total de 311 gatos fueron fenotipados mediante observaciones directas realizadas en recorridos por los distintos barrios de la localidad, atendiendo a los marcadores fenotípicos de color de pelaje: gen Naranja (Orange) (O), Agouti (A) o rayado, Negro (Black) (D), color diluído (Dilution) (d), pelo largo (Long Hair) (L), Manchas blancas (Spotting white) (S), Blanco Dominante (Dominant White) ( W ) y Manx (cola corta o nula “M”). Se calculó la frecuencia alélica de cada gen en el total de animales registrados y se comparó con las frecuencias del equilibrio  Hardy-Weinberg. Se encontró que el marcador Non-agouti (no rayado) y pelo corto, fueron los de mayor frecuencia, mientras los marcadores Blanco Dominante, Naranja, Pelo Largo presentaron los valores más bajos en la población.

Introducción:

En el presente trabajo se realizó un relevamiento de gatos de la localidad de Choele Choel, provincia de Rio Negro, Argentina. Se obtuvo un total de 311 gatos, a partir de los cuales se estimaron las frecuencias alélicas de genes que determinan el color del pelaje y otros marcadores fenotípicos.

Los marcadores fenotípicos, especialmente los relacionados con la coloración del pelaje, constituyen una valiosa herramienta a la hora de analizar la estructura genética de las poblaciones, debido a su gran contenido informativo, bajo costo, fácil manipulación e identificación y rápida obtención de resultados

Las características de los genes en que se basó el trabajo fueron:

  • Agouti: (A) es un gen dominante y autosómico que determina la presencia de un patrón de rayas. Por lo tanto, un gato necesita una sola copia del alelo “A” para tener la capa atigrada. En el caso de individuos con genotipo “aa” (homocigotas recesivos) ó no agutí, el pelaje de estos será de un color sólido.
  • Naranja: (O) el color naranja del pelaje está determinado por el gen O el cual está ligado al sexo y se encuentra en la región diferencial del cromosoma

Los machos poseen dos fenotipos posibles, ya que portan un solo alelo en su cromosoma X; en cambio las hembras tienen tres fenotipos posibles ya que ambos cromosomas X portan cada uno un alelo diferente o no. Las homocigotas dominantes (XOXO) expresan color anaranjado, las homocigotas recesivas (XoXo) expresan el color de base (negro o azul) y las heterocigotas expresan el fenotipo carey o calicó. Este fenotipo se produce por la inactivación de un cromosoma X al azar, formando zonas de color naranja y zonas del color de base. Las zonas de color naranja se producen por la inactivación del X portador del alelo recesivo (Xo), por lo tanto el alelo dominante (XO) inhibe el color de base. Las zonas del color de base se producen por el fenómeno inverso, el color de base puede expresarse gracias a la inactivación del X portador del alelo epistático. (Marrube et. al, 2013)

  • Negro: (B) el color negro depende de la interacción entre tres genes y es autosómico. El gen “B” determina la pigmentación negra, el gen “C” es la plena expresión del color y el “D” es de la coloración densa. Variantes de los genes B y D dan lugar a otros 3 colores, el b1 convierte el negro en un color pardo-chocolate mientras que una segunda mutación da origen al aleo b2 que da una capa más pálida de color canela.
  • Una mutación del gen D (negro) dará el gen dilución (d) diluyendo el color negro a gris.
  • El color negro del pelaje es un ejemplo de serie alélica, que es un conjunto de  alelos, para un gen determinado, cada alelo de este serie da lugar a un fenotipo diferente, lo que permite definirlo y separarlo de los otros.
  • Blanco: ( W)  la coloración blanca de todo el manto se debe a la presencia del alelo dominante del gen W, el cual es epistático y autosómico. Su presencia enmascara la expresión de todos los otros genes de color.
  • Manchado de blanco: (S) las manchas blancas son determinadas por el gen S, que es autosómico dominante. Es un gen con expresividad variable y dominancia incompleta. A modo de simplificación: si el individuo es homocigota recesivo (ss) no tendrá manchas blancas, mientras que los individuos heterocigotos (Ss) tendrán manchas en menos del 50% del cuerpo, y los individuos homocigotas dominantes (SS) presentarán más del 50% del cuerpo con manchas. (Christensen, 2000).
  • Longitud del pelo: (L)el pelo corto en los gatos está determinado por un gen dominante (L) por lo que aquellos individuos con genotipo homocigoto dominante (LL), o heterocigoto (Ll) tendrán pelo corto, y solo los homocigotas recesivos (ll) tendrán el pelo largo.  
  • Manx: (M) La ausencia de cola, o una cola extremadamente corta está determinada por el gen M que es autosómico y dominante. Los individuos homocigotos recesivos (mm) tendrán el largo de cola normal, en tanto que la expresión de ambos alelos dominantes (MM) resulta en un gen letal.

Los autores de las características morfológicas especificas de estos gatos Manx fueron descriptos por Howell y Sieger. Los autores distinguen un seguimiento de cuatro tipos:

  • Rumpy o manx verdadero : se ven afectadas las vertebras caudales.
  • Rumpy-riser: algunos gatos tienen vertebras caudales inmóviles
  • Stumpy: Los gatos tienen un gran numero significante de vertebras caudales (3) que el tipo previo pero anormalmente cola conformada.
  • Longie: la cola es corta con una normal apariencia.

Se ha notado que la anormalidad es causada por un factor dominante semiletal con un efecto letal recesivo en una etapa embriológica temprana.  Como el factor letal tiene una expresividad variable, el desarrollo de otras partes del cuerpo pueden ser también ser impares (faltas de vertebras lumbares, acortamiento de vertebras). Se supone que estos cambios son controlados por modificaciones genéticas. (Zhigachev-Vladimirova, et-al, 2002).

Tabla No 1: Genes utilizados en el relevamiento y sus símbolos

LocusAlelosCaracterísticas
O (gen ligado al sexo)OPigmentación naranja
oPigmentación no naranja
A(gen autonómico)AAgutí
aNo agutí
D (gen autosómico)DColor negro denso
dColor diluido (Gris)
L (gen autosómico)LPelo corto
lPelo largo
W (gen autosómico)WColor blanco
wExpresión de otros colores

Referencias: Ruiz Garcia y col.1994, Wright y Walters.1982, Pardo P. E. y col., 2014.

Materiales y métodos

La localidad de Choele Choel se encuentra en la provincia de Rio Negro (39°17′09″S 65°39′15″O). Para la recolección de datos Se utilizaron Google Maps, cámaras fotográficas y anotaciones. Se tuvieron en cuenta, además del pelaje, datos como raza, sexo, nombre, domicilios y edad, siempre que fuese posible.

Mapa Choele Choel y sus zonas
Mapa Choele Choel y sus zonas

Figura N° 1: Mapa de Choele Choel y zonas estudiadas

Tabla No.2

Zona% de la población felina
Zona 1 (Barrio Las Bardas)8,6%
Zona 2  (Barrio Maldonado )17,68%
Zona 3 (Centro )10,28%
Zona 4 (Calle Roca – 25 de Mayo)27,65%
Zona 5 (Calle Rojas- La Anónima)36,3%

Tabla No. 2: Zonas y barrios de la localidad utilizados en el relevamiento

Tabla No.3

FenotiposNúmero de animales
Agutí (A_)194 2
No agutí (aa)117 3
Naranja: (O_)89
Manchado de blanco: (S)166
Blanco dominante (W_ )10
Negro (D_X°X°)94
Dilución (gris) (dd)71
Manx (M) = 11
Pelo corto (L_)256
Pelo largo (ll)55

Tabla No. 3: Animales hallados en el relevamiento. Censo total en ciudad de Choele Choel= 311 gatos.

Datos recolectados: 1

1 Todo gato que contara con la presencia de más de un gen (por ejemplo tricolores que tienen gen naranja, gen negro, dilución y manchado blanco) fueron incluidos en el conteo de cada gen.

2En el conteo de individuos se incluyó a todo aquel que tuviera presencia del gen agutí, aunque además presentara otros genes (Naranja, Manchado de blanco, Gris, etc.)

3 Al igual que con el gen agutí, se toma en cuenta aquellos individuos que presentan otros genes.

Datos para cálculos de frecuencias

En este estudio se identificaron y cuantificaron aquellos individuos con el genotipo homocigoto recesivo, debido a que son los únicos posibles de distinguir fenotípicamente. Es así que se estimaron las frecuencias alélicas teniendo en cuenta la nomenclatura clásica dónde al alelo recesivo se lo denomina “q” y al alelo dominante “p”

Gen agutí: Debido a que son indistinguibles, fenotípicamente hablando, aquellos individuos con genotipo heterocigoto (Aa) del homocigoto dominante (AA) ya que ambos tienen el fenotipo atigrado (Agutí), sólo podemos identificar y asignarle el genotipo a aquellos individuos con fenotipo no agutí, (homocigotas recesivos “aa”)

Frecuencia Genotípica “aa”= =117/311= 0,38

A partir de la frecuencia genotípica, se calculó la frecuencia génica de “a” empleando la siguiente fórmula:

q = Frec. (a) = √ Q ² = 0,61

Como la suma de las frecuencias alélicas es igual a la unidad (p + q = 1), podemos calcular por diferencia la frecuencia génica de A:

p = Frec (A) = 1 – Frec. (a)= 1 – 0.61= 0,39

Además, el cálculo de las frecuencias alélicas se puede usar para comparar si la población de Choele Choel se encuentra en equilibrio Hardly-Weimberg, para lo cual su utiliza la siguiente fórmula:

p2 + 2pq + q2 = 1

Donde:

  • p2 es igual a P2: frecuencia genotípica de homocigotas dominantes en el equilibrio
  • 2pq: es la frecuencia de los heterocigotos en el equilibrio
  • q2: es la frecuencia de los homocigotas recesivos en el equilibrio

Reemplazando los valores obtenidos: p (0,39) y q (0,61) las frecuencias genotípicas en el equilibrio deberían ser:

p22pqq2
0,3922 x 0,39 x 0,610,612
0,150,480,37

En la población muestreada sólo podemos calcular, como ya se explicó, la frecuencia genotípica de las homocigotas recesivas (no agutí), que en nuestro caso dio 0,38.

Luego se realizo el mismo procedimiento para el resto de los alelos.

Tabla No. 4: Frecuencias alélicas estimadas

GenFrecuencia qFrecuencia p
A0,620,38
O0,840,16
S0,680,32
W0,980,02
D0,480,52
L0,410,59
M0,9980,002

 Frecuencias fenotípicas de cada marcador

Una vez de haber realizado el cálculo de frecuencia alélica concluimos que los alelos que predominan en este muestreo aleatorio de Choele Choel serían L, d, w, y O. El alelo pelo corto (L) fue el que mostró mayor frecuencia al igual el gen de la dilución en nuestro muestreo aleatorio. El alelo dominante blanco ( W ) y el gen Manx (M) fueron los que presentaron valores más bajos de frecuencia. También los marcadores pelo largo y naranja mostraron bajas frecuencias a nivel de la población total en el censo.

Conclusión y discusión:

La elevada frecuencia del gen manchado de blanco, podría estar relacionada con factores ambientales como las altas temperaturas, que posiblemente estarían favoreciendo no solo la presencia, sino el aumento de individuos portadores de dicho gen (Ruiz-Garcia y Alvarez. 2005; Kaelin y col.2012; Eizirik y col. 2010). En nuestro caso, la frecuencia del gen manchado de blanco fue menor al 50% que suponemos que podría estar relacionado a las bajas temperaturas de la región.

Se ha propuesto que la carencia del gen W puede ser utilizada como indicador de diversidad genética (Ruiz-García y Álvarez. 1999).

En el presente estudio se encontró un bajo porcentaje del marcador W, resultado similar a lo reportado en estudios realizados en otras poblaciones (Ruiz- García y Álvarez. 1999). Sin embargo, el hecho que la frecuencia del alelo W sea muy baja o no se encuentre en todos los estudios, puede atribuirse a efectos pleiotrópicos sobre la audición (Geigy y col. 2007) lo cual podría causar complicaciones en los individuos así como la muerte a una edad más temprana.

Estudios han reportado que el gen No Aguti se ve favorecido en ambientes urbanos, cuyas densidades poblacionales son altas (Rosenfeld, 2010), pues tienden a “sociabilizar” con otros congéneres para poder co-existir y adaptarse, lo que permite suponer que los gatos que portan este gen, están mejor adaptados a las condiciones imperantes de este sitio, que otros que no lo portan.   Además, otra posible respuesta podría ser el rápido crecimiento poblacional de gatos lo cual incrementa considerablemente el flujo genético e incrementa la panmixia (Peña-Cruz y col. 2015). Si bien, el estudio se realizó en la zona urbana de la localidad, esta condición del gen No Agutí no se observó en la población, siendo solo el 38% de la misma.

Con respecto al gen Manx solo se encontró una gata castrada en la ciudad de Choele Choel por la que no dejará descendencia.  Es producto de una mutación natural y no es un animal de raza adquirido. Concluimos que la gata encontrada en la ciudad entra en la clasificación de Rumpy-riser. 

Bibliografía:

Christensen, A. (2000). Cats as an Aid to Teaching Genetics. Genetics155(3), 999-1004.

Pardo, E., Morales, J., & Cavadia, T. (2014). Estudio de la diversidad genética de la población de gato doméstico (Felis catus) en Montería, Colombia. Bistua Revista de la Facultad de Ciencias Basicas, 12(2), 35-47.

Wright, M. and Walters, S. (1982). El gato. 1st ed. Barcelona: Editorial Blume.

Ruiz-Garcia, M., Alvarez, D., & Shostell, J. (2005). Population genetic analysis of cat populations from Mexico, Colombia, Bolivia, and the Dominican Republic: Identification of different gene pools in Latin America. Journal Of Genetics, 84(2), 147-171.

-Guia de lectura de Genética Básica. MARRUBE, Graciela; MOTTER Mariana, MAIZON Daniel; PINTO Gabriel et-al, 2013. Universidad de Buenos Aires. Argentina. Genética Básica. Guía de Lectura. 2da y 3ra edición. BMPress Editores. 2006. I.S.B.N.: 987-97692-8-7. 

Zhigachev, A. I., & Vladimirova, M. V. (2002). Analysis of the Inheritance of Taillessness in the Baikuzino Population of Cats from Udmurtia. Russian Journal of Genetics38(9), 1051-1053.)

Pagina del Blog Desde Mendel hasta las moléculas. genética del sexo

Síndrome overo letal blanco (OLWS). Monografía de alumnos Genética Básica

Caballo overo sano. By Bonnie U. Gruenberg – Own work, CC BY-SA 3.0,

Nuevamente quiero dejarles una monografía realizada por dos de mis alumnos de Genética Básica 2017, en este caso Shaira Fernández y Emilio Torres, sobre una enfermedad hereditaria en caballos, el Síndrome Overo Letal Blanco, también conocido como OLWS. Felicitaciones por el trabajo y espero ayude a muchos otros que buscan información sobre el tema.

Tema: Monografía de enfermedad genética hereditaria

Autores: Shaira Fernández – Emilio Torres

Año: 2017

Docentes: Gabriela Iglesias – María Pía Beker

Carrera: Medicina Veterinaria

Materia: Genética Básica

Universidad Nacional de Rio Negro- Sede Alto Valle y Valle Medio (AVVM)

Introducción:

Los objetivos del presente trabajo son profundizar conocimientos genéticos sobre el síndrome overo letal blanco en caballos de la raza Cuarto de Milla Americana principalmente y otras como pintados, caballos miniatura, árabes y occidentales.

El síndrome del potro blanco letal overo se conoce como aganglionosis ileocolica y está directamente relacionado con el gen EDNRB ubicado en el cromosoma 17.

Los patrones de overo blanco son causados por un solo gen (dominante) por lo contrario los caballos con dos copias del gen (recesivo) nacen completamente blancos, (Horse: University of Minnesota Extension, 2017) causando la muerte de los potrillos poco después del nacimiento debido a defectos en el desarrollo embriológico de este, alterando la migración de las células de la cresta neural, las células progenitoras de los melanocitos y ganglios intestinales. (Horse Genome Project, 2017)

Se han descubierto similitudes entre el gen O y el gen que causa la enfermedad de Hirschsprung en humanos. La mutación esta en un lugar diferente en el gen pero causa los mismos efectos: manchas blancas y defectos del desarrollo. (Horse: University of Minnesota Extension, 2017)

Contenido:  

En los caballos hay 32 pares de cromosomas, cada célula del cuerpo de un caballo contiene dos copias de cada cromosoma, una de la madre y otra del padre. (Horse Genetics,2017). El alelo overo muestra pleíotropia que significa que tiene más de un efecto sobre el fenotipo. (Horse Genetics, 2017)

Los potrillos nacen con ojos azules y una bata blanca, y pueden tener pequeñas manchas negras a lo largo de la cabeza, cola y melena. Luego de un tiempo comienzan con cólicos debido a que no pueden defecar, a causa de un mal desarrollo del sistema nervioso gastrointestinal. Las células embrionarias encargadas de formar los nervios mencionados anteriormente también determinan el color de piel. (Horse: University of Minnesota Extension, 2017)

La mutación que causa esta patología es una sustitución de sentido erróneo, que provoca el cambio de lisina por isoleucina, esto ocurre en el codón 118 del receptor de la endotelina B (EDNRB) que está localizado en el cromosoma 17. (Universidad de California Santa Cruz, 2008). Esta proteína está asociada a la regulación del desarrollo de las células de la cresta neural que se convierten en ganglios entéricos y melanocitos. (Santschi, 1998)

Cabe destacar que la sustitución ocurre en el primer dominio transmembrana de un receptor acoplado a la proteína G de 7 dominios transmembrana para las endotelinas. (Baynash et al., 1994; Hosoda et al., 1994).

Características propias del gen:

Gen: EDNRB

Titulo: receptor de endotelina tipo B

Mutación: ocurre en codón 118 de EDNRB

Localización: cromosoma 17

Recuento de exones: 8

Longitud: 24,536 pares de bases (bp)

Fuente: EDNRB endothelin receptor type B [Equus caballus (horse)] – Gene – NCBI. (2017).

Mutación del ADN: NM 001081837.1:c.353_354delinsAG

Efecto previsto de la mutación: Interrupción de aminoácidos (isoleucina 118 por lisina)

Fuente: Bellone, R. (2010).

figura 1 corregida
Figura 1: Secuencia gen EDNRB. Fuente: EDNRB endothelin receptor type B [Equus caballus (horse)] – Gene – NCBI. (2017).
figura 2
Figura 2: Gen endotelina B. Fuente: EDNRB endothelin receptor type B [Equus caballus (horse)] – Gene – NCBI. (2017)

Diagnóstico :

PCR especifica de alelo, es una de las variaciones de la PCR básica que se usa para identificar o utilizar los polimorfismos de una sola base (SNPs). Se utilizan primers específicos para la secuencia normal y mutante. El diseño más habitual de esta técnica es un análisis en dos tubos con dos primers: uno normal y otro mutante en reacciones separadas junto con los primers control. (Reacción en cadena de la polimerasa. Es.wikipedia.org, 2017)

La reacción de cadena en la polimerasa (PCR) alelo especifica es la técnica de genética molecular utilizada para identificar a los caballos reproductores en riesgo de transmitir el gen letal a sus descendientes.  Para analizar el ADN se extrae sangre o muestras de cabello con raíces. (Horse Genetic ,2017).

Esta técnica permite amplificar el ADN, produciendo cantidades relativamente grandes para analizar su secuencia génica, expresión génica. Los materiales para llevar a cabo la reacción vienen incluidos en un KIT con uno o más cebadores de oligonucleótidos (cadenas cortas de nucleótidos), tampón de reacción de PCR, enzima de ADN polimerasa, materiales de análisis de electroforesis en gel e instrucciones para llevar a cabo reacciones de PCR. (Metallinos et al. 2002)

Descripción de la técnica:

En este caso es un método para identificar un gen del receptor de endotelina B de tipo salvaje y la mutación, amplificando una porción del gen del receptor de endotelina B de una muestra biológica de caballo usando cebadores/primers denominados SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 13, SEQ ID NO: 14 y SEQ ID NO: 15 en reacciones de amplificación en las que da como resultado la generación de polinucleótidos de 174, 105 y 90 bp. (Metaliinos et al. 2002).

figura 3 primers
Figura 3: grupo de primers que se utilizaron para llevar a cabo la técnica PCR alelo específica. Fuente: patente US 6372900 B1 – Horse Endothelin-b Receptor Gene And Gene Products The Lens

La Figura 4 muestra la orientación y posición de los cebadores usados en un ensayo de reacción en cadena de la polimerasa (PCR) para detectar la mutación de dos pares de bases asociada con el Síndrome Overo Letal Blanco. Las flechas indican el extremo 3 ‘ de cada cebador. El recuadro alrededor de las bases TC-AG, muestra la diferencia de secuencia de dos pares de bases entre el caballo de tipo salvaje y el ADN de caballo blanco letal.

figura-4.jpg
Figura 4: Esquema de la secuencia y los primers u oligonucleótidos usados para la amplificación en una PCR alelo específica. Fuente: patente US 6372900 B1 – Horse Endothelin-b Receptor Gene And Gene Products The Lens.
figura-5.jpg
Figura 5: muestra los resultados de una reacción de PCR realizada en un gel de poliacrilamida al 12% y teñida con bromuro de etidio. Fuente: patente US 6372900 B1 – Horse Endothelin-b Receptor Gene and Gene Products The Lens

En la Figura 5 observamos el carril 1 que es el producto de PCR de una muestra de caballo heterocigota; el carril 2 es el producto de PCR de la muestra de caballo de potro blanco letal y el carril 3 es el producto de PCR de una muestra homocigótica de caballo salvaje.
Se puede observar que cada carril tiene el control de 174 pares de bases para la reacción de PCR resultante de la amplificación con los cebadores E1.F y E1.R. Los carriles 1 y 2 tienen el producto específico blanco letal de 105 pares de bases resultante de la amplificación con los primers lw2. F y E1.R. Los carriles 1 y 3 tienen el producto específico de tipo salvaje de 90 pares de bases resultante de la amplificación con los cebadores wt2.F y E1-2.F.
( Patente US 6372900 B1 – Horse Endothelin-b Receptor Gene And Gene Products The Lens).
En conclusión se puede distinguir un producto del alelo blanco letal de 105 pb y alelo tipo salvaje de 90 pb. Por lo tanto los portadores del alelo del potro letal blanco pueden identificarse fácilmente por PCR.

Aplicaciones más importantes de esta técnica: detectar alelos de un gen normal y mutado (enfermedades hereditarias), portadores (individuos que presentan un fenotipo normal, pero son capaces de transmitir a su descendencia un carácter indeseable que los predispone a padecer una patología). Por lo general este carácter sigue un modelo de herencia simple recesiva, de tal modo que solo las homocigotas recesivas presentan el fenotipo indeseable. (Técnicas de biología molecular, 2008)

Modo de transmisión a la descendencia:

La herencia del gen se caracteriza por ser:

  • Autosómica recesiva
  • Expresividad variable
  • Es Letal
  • Penetrancia incompleta

Fuente: (the “genetics”of beeding horse journals, 2013).

capture-20171120-204132

Figura 6: Esquema de modo de herencia del gen overo letal blanco. Fuente: (Santschi et al.,1998)

El apareamiento de dos overos heterocigotos dará como resultado promedio un 25 % de potros con el gen letal overo blanco, esto quiere decir que hay una probabilidad de 1 en 4 de que nazca un overo blanco letal, los demás descendientes serán overos de color sólido o heterocigotos.

Los potros afectados son homocigotos para el gen Lys (Lys 118/Lys 118) y los portadores son heterocigotos (Ile 118/Lys 118).

La incidencia de heterocigotos OLWS es muy alta, mas de 94% en caballos marco overo muy blanco y mezclas de marco overo. Un 21% de incidencia de heterocigotos OLWS blancos con patrones de color incluyen al tobiano, sabino. (Santschi et al; 2001).

Se recomienda cruzar caballos sólidos con overos que dan como resultado potros sólidos y overos en igual número sin aparecer potros con el gen letal. Ocasionalmente los caballos sin patrones apreciables de manchas corporales han engendrado potros con LWO (letal White overo) incluida la raza cuarto de milla. Algunos caballos que llevan el gen overo letal blanco pueden tener poco o ningún color blanco en ellos. (lethal white overo horses, 2017)

Debido a esto no se puede deducir el genotipo necesariamente a partir del color del pelaje. (Metallinos et al., 1998)

Prevención y control:

  • Principalmente un diagnostico PCR  dirigido a todos los overos de cuadro y sus descendientes.
  • Pelajes similares como: tobiano, pintado.
  • Prevención en la adquisición de un ejemplar equino

Conclusión:

Concluimos que conocer la genética del caballo nos sirve para su mejoramiento ya que los genes son como si fueran piezas de un código que indica cómo se va a construir molecularmente un organismo y su funcionamiento. Además debemos recordar que los trastornos genéticos van a ser heredados y que a simple vista no podemos diagnosticarlos ya que los pelajes pueden resultar engañosos, para ello es necesario conocer el árbol genealógico del animal o realizar una técnica de diagnostico molecular (PCR),  la cual está a nuestro alcance en Argentina solo que debemos mandar a sintetizar los primers específicos y contar con la infraestructura necesaria para realizarlo.

A lo largo de esta investigación podemos afirmar que el síndrome overo letal blanco es una enfermedad genética a tener en cuenta sobre todo en caballos de la raza cuarto de milla, pese a las excepciones ya nombradas en otras razas, siendo de pronóstico grave y sin tratamiento que termina en la muerte del potrillo entre las 12-24 horas aproximadamente luego de su nacimiento.  Si bien la bibliografía nos lleva a casos de otros países debemos prever la posibilidad de que suceda en Argentina y saber actuar al respecto.

Con estas herramientas de diagnostico podemos proveer información acerca del gen letal para criadores y haras con el fin de prevenir el nacimiento indeseado de potrillos con este síndrome y además a las personas dispuestas a adquirir un ejemplar. Como parte de nuestra formación en medicina veterinaria creemos imprescindible el asesoramiento para evitar pérdidas.

Bibliografía:

·         Horse Genome Project. (2017). Uky.edu. Retrieved 24 October 2017, from http://www.uky.edu/Ag/Horsemap/

·         Finno, C., Spier, S., & Valberg, S. (2009), Equine diseases caused by known genetic mutatios. The Veterinary Journal, 179(3), 336-347.doi:10.1016/j.tvjl.2008.03.016

·         Santschi, E., Purdy, A., Valberg, S., Vrotsos, P., Kaese, H., & Mickelson, J. (1998). Endothelin receptor B polymorphism associated with lethal white foal syndrome in horses. Mammalian Genome, 9(4), 306-309. doi:10.1007/s003359900754

·         Lethal white overo horses. (2017). Horse-genetics.com. Retrieved 24 October 2017, from http://www.horse-genetics.com/overo-horses-LWO.html (Overo lethal white syndrome (OLWS) : Horse : University of Minnesota Extension
·         Overo lethal white syndrome (OLWS) : Horse : University of Minnesota Extension. (2017). Extension.umn.edu. Retrieved 24 October 2017, from https://www.extension.umn.edu/agricult)
·         Horse Genome Project. (2017). Uky.edu. Retrieved 24 October 2017, from http://www.uky.edu/Ag/Horsemap/hgpd
·         lethal white overo horses. (2017). Horse-genetics.com. Retrieved 24 October 2017, from http://www.horse-genetics.com/overo-horses-LWO.html
·         (Overo lethal white syndrome (OLWS) : Horse : University of Minnesota Extension (2017). Extension.umn.edu. Retrieved 24 October 2017, from https://www.extension.umn.edu/agricult
·         TÉCNICAS DE BIOLOGÍA MOLECULAR. (2008). Desde Mendel hasta las moléculas
·         Patente US 6372900 B1 – Horse Endothelin-b Receptor Gene And Gene Products The Lens. (2017). The Lens.
·         EDNRB endothelin receptor type B [Equus caballus (horse)] – Gene – NCBI. (2017). Ncbi.nlm.nih.gov
·         Bellone, R. (2010). Pleiotropic effects of pigmentation genes in horses. Animal Genetics, 41(s2), 100-110.
·         Danika Metallinos, Portola Valley, California (EE. UU.); Jasper Rine , Moraga, California (EE. UU.); y Ann Bowling, Davis, California (EE. UU.), 2002

Videos educativos de alumnos: Heredabilidad y repetibilidad

En esta oportunidad les dejo el video educativo sobre heredabilidad y repetibilidad que hicieron un grupo de alumnas mías de la carrera de Veterinaria de la Univ. Nacional de Río Negro. En este caso ellas son:  Luciana Román, Fiamma Fornies, Daiana Garramuño y Yanina Lorena Ibarra

Felicitaciones chicas!!!! Muy buen trabajo!!!