DESDE MENDEL HASTA LAS MOLÉCULAS

f0022658-dna_structure-spl.jpg

Gracias a Science Photo library por las maravillosas fotos

Objetivo del Blog

Distinción como Blog del Mes

El objetivo de este Blog es principalmente el de lograr que todos aquellos que tengan ya alguna base de biología,  puedan comprender mejor algunos aspectos de la Genética, usando algunas nuevas herramientas pedagógicas como el uso de hipertexto, imágenes y animaciones o videos.

Aquí podrán encontrar en las distintas páginas, algo acerca de Mendel (el padre de la genética), de la biología molecular y las nuevas técnicas que se utilizan en la actualidad para el diagnóstico, la investigación, el mejoramiento genético, la bromatología, la bacteriología, la virología, el control epidemiológico, etc. Muchas de las técnicas descriptas en la página de Técnicas de Biología Molecular se aplican a todos esos campos de la ciencia. Allí podrán encontrar un ejemplo que se aplica a detección de genes mutados para diagnóstico, de determinación de SNPs (variaciones de un solo nucleótido) para el mejoramiento genético, detección de virus y bacterias , todos ellos se basna en el mismo ejemplo esquematizado. Ver Marcadores moleculares en Descarga de archivos

Gregor Mendel en 1866 fué capaz de deducir las tres leyes básicas de la herencia de las características. Sin conocer como era el material genético (ADN) ni saber como se transmitía, fué capaz de ver y poder explicar como se heredan las características de generación en generación. Esto lo convirtió en el padre de la Genética como ciencia. Ver INTERPRETACION DE LAS LEYES DE MENDEL.  Esta ciencia ha sido una de las que mayor trascendencia alcanzó en el siglo pasado y en éste ya que hoy en día podemos explicar todas las leyes de Mendel conociendo como se forman las gametas (meiosis) . A posteriori de sus descubrimientos fueron surgiendo otros ejemplos de mecanismos de herencia de los genes, los genes ligados.

Luego nacen la citogenética y sus aplicaciones en el diagnóstico (cariotipo o estudio de los cromosomas) e incluso el estudio de las alteraciones que producen los cambios en el número o morfología de los cromosomas.

Por otra parte luego se descubren como se heredan ciertos genes relacionados con el sexo del individuo que los porta (ver página de Genética del sexo)

Con controversias actuales acerca de moral, bioética y demás preocupaciones así mismo promete ser la solución a una gran cantidad de problemas, como enfermedades hereditarias y metabólicas, terapia génica, vacunas más eficientes, diagnósticos rápidos de distintos tipos de enfermedades por PCR, la aplicación al control epidemiológico de enfermedades infecciosas (es decir determinar el orígen de una cepa viral o bacteriana y como entró en una región), control de contaminaciones alimenticias (ver en descarga de archivos la detección de E.coli productora de sindrome urémico hemolítico) , el mejoramiento de especies vegetales y animales, etc.

Hay un video que encontré en YouTube que me pareció maravilloso como relata la historia de esta ciencia. El único inconveniente es que está en Inglés y es muy largo por lo tanto traducirlo se hace casi imposible, sin embargo me gustaría compartirlo creo que es bastante comprensible y muy útil como presentación.

Este blog está siendo construído con el objeto de escribir comentarios sobre la historia de la genética, los avances de la misma, sus derivaciones y aplicaciones, mostrar imágenes y videos educativos de los procesos de la biología molecular y su técnicas y la genética en general-

Es un Blog educativo y que espero que más que informar, permita formar el pensamiento crítico de los alumnos universitarios que lo visten, así como de otros visitantes que quieran informarse acerca de los procesos biológicos.

Mapaconceptual de como nacio la genética

Hay un video de una presentación de Power Point que resume un poco la historia de los hallazgos más relevantes de la genética. Espero les guste.

 

Avances que sugieren la posibilidad de alargar la vida en ratones

Hace tiempo que es sabido que a medida que las células envejecen los telómeros, (extremos de los cromosomas) se van acortando, es una de las razones por la que la famosa Oveja Dolly, primera clonada, vivió muy poco. Es que el clon se hizo con células de tejido adulto, ya envejecidas. Sin entrar en detalles complejos sobre los telómeros, pareciera que una de sus funciones es evitar o proteger los extremos de los cromosomas y a medida que envejecemos se acortan provocando pérdidas de información genética que llevan a la apoptosis celular.

Fuente

Sin más preámbulos quería dejarles esta noticia que leí y me pareció muy interesante

Dada la relación entre telómeros y envejecimiento -los telómeros se acortan a lo largo de la vida, así que los organismos más viejos tienen telómeros más cortos-, los científicos se han lanzado a estudiar cómo afecta a los ratones el tener telómeros hiperlargos. Los resultados se publican en Nature Communications y muestran solo consecuencias positivas: los animales viven más con mejor salud, sin cáncer ni obesidad. Lo más relevante, para los autores, es que por primera vez se aumenta significativamente la longevidad sin ninguna modificación genética.

Para leer la noticia completa, está disponible en Genética Médica news y puede leerla haciendo clik aquí

Anuncios

Realidad aumentada: Mitosis y Meiosis

Como muchos de Uds. sabrán, comprender los fenómenos que ocurren durante las divisiones celulares (mitosis y meiosis) en muchos casos es complejo, especialmente para nosotros como docentes, porque solemos dibujar cromosomas o usar esquemas de las etapas de las divisiones pero de forma plana. En la Universidad de La Serena en Chile, han diseñado una guía para alumnos tanto de meiosis como de mitosis en la que los alumnos pueden, utilizando un app de su celular, mirar los esquemas de la Guía en 3 dimensiones.

Este increíble desarrollo de la Guía y las aplicaciones se los debemos a: Francisco López Cortés, Claudio Palma-Rojas, Camilo Ibacache, Cristian Araya-Jaime del LABORATORIO DE INVESTIGACIÓN E INNOVACIÓN
TECNOLÓGICA PARA LA EDUCACIÓN EN CIENCIAS
y Universidad La Serena. Chile.

Solo hay que:

  1. Bajar la aplicación gratuita de Google store de Mitosis: 3D Mitotic division. Disponible en App Store también.
  2. Bajar la aplicación gratuita de Google store de Meiosis: División Meiótica 3D App Store también.
  3. Desde la aplicación pueden bajar la guía de cada una para imprimir y mirar con la aplicación que usa la cámara del teléfono para convertir el esquema en 3D. Tambien podrían optar por no bajarla y mirarla directamente online
  4. Les dejo en la siguiente pizarra digital de PADLET ambas guias, por si optan por mirarlas online.
  5. Las imágenes en 3D son realmente muy claras y pueden verse en distintos planos moviendo el teléfono
Les dejo esta imágenes a modo de ejemplo para que practiquen con la aplicación de sus teléfonos
Captura de pantalla de mi teléfono mirando esta imagen con la App en este articulo del Blog
Captura de pantalla 2 de mi teléfono mirando esta misma imagen con la App en este articulo del Blog
Captura de pantalla 3 de mi teléfono mirando esta misma imagen con la App en este articulo del Blog

Una pequeña muestra de lo que van a ver les dejo aquí abajo. Luego las guías en la pizarra digital

Made with Padlet
Pizarra digital donde subí las guías para imprimir o ver online

Espero les parezca super útil como a mí, y les ayude en la comprensión de estos temas

Problemas de indexación de goole

A todos los lectores, alumnos, curiosos, docentes y demás visitantes que pasan por el sitio

Quería comentarles que hace ya un año o más, traté de mejorar este blog educativo, comprando el plan premium de wordpress e hice un diseño de la página que me pareció muy lindo, pero evidentemente luego de ese intento, que superó mi conocimiento de las nuevas formas de indexación y otras yerbas de google y las herramientas SEO que son para monetizar el sitio (cosa que no fué mi objetivo), el blog comenzó a tener problemas de indexación de google y casi desapareció de las búsquedas.

Lamentablemente mis tareas como profesora en la Universidad y las tareas de investigación que realizo me impidieron dedicarle más tiempo a ver cómo se podía solucionar.

Leí muchos foros, entre a los paneles de control de Console de google, chequeé google analytics pero nada, no es mi especialidad.

Finalmente volví al plan más simple pero aún no se solucionan los problemas de indexación.

Estoy apenada porque el sitio estaba bien posicionado y llegaba a muchos lectores

Ahora tiene 3 veces menos visitantes que antes.

He modificados muchas imágenes y hecho muchos modificaciones a cada página para que se ajuste más a las nuevas directivas de google y a lo que quiero mostrar.

Lamento que los gráficos que me llevó tantas horas realizar, no hayan sido vistos como este que les dejo abajo y que está en la página de Genética del sexo

Otros como en las páginas de Leyes de Mendel con fotos reales de gatos como ejemplos, o de la página de alteraciones cromosómicas o la de mutaciones puntuales tampoco hayan sido vistos

En fin espero que de a poco se vaya solucionando y puedan encontrar ejercitaciones resueltas y otras cosas que hemos ido actualizando. Muchas no salen en la búsqueda de google.

Lamento los inconvenientes y pido disculpas. Espero se solucione pronto

Gabriela

Monografías de alumnos

ESTIMACIÓN DEL VALOR DE CRÍA

Amatta, R. Duque, J. Izaguirre, R. Quevedo, G



Imagen por Giovanna Quevedo

Introducción

En esta monografía se describen y explican los conceptos de valor de cría (VC) y su estimación a través de parámetros poblacionales y análisis estadísticos. El valor de cría se estima con el fin de establecer un ranking de eficiencia productiva de los animales de un rodeo, con el objetivo de mejorar una característica genética eligiendo a los mejores reproductores para la siguiente generación y lograr una mejora genética a lo largo de las generaciones de una población de animales. El valor de cría también va a definir cuanto progresa genéticamente esa población de una generación a otra, midiendo el progreso de la siguiente generación con respecto a la primera, es decir, a través de la diferencia entre la media del grupo seleccionado y la media original  multiplicado por la heredabilidad de la característica

Monografías de alumnos: ESTIMACIÓN DEL VALOR DE CRÍA

El fenotipo (P) de un individuo está determinado por su componente genético (G) y la influencia del ambiente (E) en el que se encuentra, tal que:

P = G + E

A su vez, el componente genético está dado por las variaciones genéticas aditivas (Ga), las de interacciones entre alelos (Gi) y por epístasis (Ge). La influencia del ambiente se puede dividir en ambiente temporal (Et) que son factores de poco alcance en el tiempo (de unos pocos meses) y ambiente permanente (cuando influencian a lo largo de muchos años o por el resto de la vida del animal). Entonces:

P= Ga +Gi + Ge + Et + Ep

Se sabe que la calidad y la cantidad de la producción de un animal está determinada por su expresión fenotípica donde esta se ve influenciada por el genotipo como determinante  de lo que va a ser ese individuo y efectos ambientales, que actúan como condicionantes.

Desarrollo

La mayoría de las características que interesan para la elaboración de productos derivados de animales y de su mejoramiento son de tipo cuantitativas, ya que su variación ocurre dentro de un espectro de medidas continuas  y no con valores concretos. Además estas características cuantitativas trabajan con poblaciones y no con cada individuo en particular, debido a que en cada uno de ellos se da solamente la interacción entre los alelos de un mismo locus (codominancia, dominancia sobredominancia) y la epístasis. En cambio, la fracción genética aditiva de un individuo está dada por su combinación de alelos de características cuantitativas y la suma de todos los genes que intervienen en ella. Si pasaran la mitad a su progenie, la suma de las características cuantitativas de la progenie estará determinada por la del individuo analizado y la de la madre o el padre que se elijan. 
            La expresión de las características cuantitativas está determinada por la influencia positiva o negativa de cientos de genes (carácter poligénico) y no de unos pocos, para ellos puede existir un espectro de fenotipos que cambian de un carácter a otro imperceptiblemente y pueden ser medidos en los individuos. Por ejemplo: peso al destete, producción láctea, peso de vellón, conversión alimenticia, espesor de grasa dorsal, número de individuos nacidos vivos por camada, etc. (4).

Las características cuantitativas tienden a presentar una distribución normal que aparece gráficamente como una curva simétrica en forma de campana, donde el eje horizontal representa valores fenotípicos y el eje vertical representa la frecuencia con que aparecen estos valores en la población.
Con solo un locus y dos alelos influenciando un carácter hay solo tres genotipos posibles con notables diferencias entre sí y distintas distribuciones normales. Al incrementar el número de locus que afectan al carácter, aumentan el número de genotipos y las diferencias entre valores fenotípicos son más pequeñas. Cuanto mayor es el número de locus que influencian el carácter, la curva de distribución de los fenotipos tiende a ser normal, ya que los valores individuales siguen cierto patrón o distribución en la curva (2).

Fig. 1 Distribución genotípica y fenotípica en una población (1).

Por ejemplo, una característica cuantitativa como el área de ojo de bife donde su
h2= 0,36 indica que la calidad de la carne de la res va a presentar mayor rendimiento en el gancho al tener mayor musculatura, además de presentar una correlación negativa con el engrasamiento, por lo que se desea llegar a un equilibrio entre estos.
Si en una población de novillos y vaquillonas se mide el total de cm2 de su área del ojo de bife, las distintas mediciones van a tomar una distribución normal tal como indica la curva color gris de la fig. 1, debido a que todos los alelos están distribuidos aleatoriamente entre todos los individuos. Sin embargo, si separamos a los animales según valores extremos, es decir, quienes presenten el mayor valor, el menor valor y los valores intermedios para ésta característica, se pueden llegar a obtener subpoblaciones que también presentan una distribución normal y cuyos extremos van a interponerse entre sí, como evidencian las curvas naranjas en la fig. 1.

Cuando se utiliza una población de animales para la producción de bienes o servicios para el beneficio económico del productor, se tiene en cuenta la expresión fenotípica de determinados genes presentes en cada animal. Estos genes que son los responsables de esos fenotipos llevan la información necesaria para determinar la aptitud de cada individuo para el rasgo que va a llevar a la producción que nos interesa mantener o mejorar. El ambiente influencia de distinta manera al genotipo para determinar la expresión fenotípica, lo que quiere decir que el lugar donde esté ubicada esa población de animales puede favorecer o limitar la expresión de dicha combinación genética. Además, las distintas condiciones ambientales a lo largo del tiempo hacen que se exprese un rango de fenotipos posibles, los cuales pueden diferir de un individuo a otro haciendo difícil saber si las diferencias fenotípicas entre ellos son debidas a su variante genética o ambiental. Según lo anterior, en éste tipo de variables el ambiente toma un papel muy importante (11).
           
            La cría ganadera, y de cualquier animal de producción de hecho, requiere variabilidad dentro y entre poblaciones si lo que se quiere es mejorar los caracteres de interés. Esta variabilidad se puede lograr cambiando las frecuencias de alelos deseables dentro de la población mediante un programa de mejoramiento genético como la combinación de los procesos de selección de los animales y de los sistemas de apareamiento (10). Se debe tener en cuenta el valor genético aditivo, que es la suma de los efectos de los alelos del mismo locus y el único que se hereda, es decir, el único que se transmite a la descendencia. El valor genético de un individuo es la sumatoria de los efectos individuales (efecto aditivo) de cada uno de estos genes (9).

Dependiendo de la necesidad de cada productor el pasar de un sistema productivo de alto insumo a otro de bajo insumo va a favorecer a razas distintas y a características distintas dentro de cada una. De modo más general, la creciente importancia de la selección genética se atribuye a factores como el bienestar animal, la protección medioambiental, la calidad distintiva de un producto, la salud humana y el cambio climático, exigiendo que se incluya una gama más amplia de criterios en los programas reproductivos (10).
Partiendo de una población de animales en una región determinada, lo primero que se debe conocer es el promedio de los valores fenotípicos de ese carácter cuantitativo en dicha población, con el fin de mantenerlo y/o mejorarlo a lo largo de las generaciones. Dicho promedio poblacional se calcula realizando la sumatoria de los valores de ese carácter en cada uno de los individuos constituyentes de la población y dividiendo sobre la cantidad total de éstos. Este valor indica el punto central para realizar una curva de distribución normal, en el cual se puede determinar la desviación estándar que se define como la diferencia del valor de cada individuo con respecto a la media de la población. A este desvío se lo puede elevar al cuadrado para calcular la varianza (Fig. 2).

Fig. 2. Fórmula de varianza fenotípica (11).


            El valor de cría es algo que se puede estimar una vez que se conoce la heredabilidad y la superioridad fenotípica para saber con qué animales del rodeo conviene quedarse como reproductores elaborando un ranking. Teniendo en cuenta el valor de cría de todos los animales se puede guiar al propietario de la población para que decida que individuos seleccionar (el ranking pondrá 1ro a los mejores individuos como futuros padres de la siguiente generación). Como es imposible saber el potencial genético exacto de un animal, lo que se busca es estimarlo mediante un Valor de Cría Estimado (VC; en inglés EBV), y se expresa siempre en relación a la media poblacional (9).

            El principio de la estimación del valor genético se basa en la regresión (3). El coeficiente de regresión, en combinación con la superioridad fenotípica de los animales en lo alto del ranking, predice mejor la superioridad  genética o el verdadero valor de reproducción (9). Esta es la forma precisa de estimación para elegir individuos mediante índices de selección. Sin embargo si se tienen buenas estimaciones de heredabilidad, también puede calcularse de modo más práctico que haciendo regresión.
            Cuando se aplican los VC para influenciar en decisiones de selección, es importante encontrar el equilibrio entre los diferentes grupos de características y enfatizar las que son de mayor importancia para la población, los marcadores genéticos y el entorno. Si bien proporcionan la mejor base para comparar el mérito genético de los animales criados en diferentes entornos y condiciones de manejo o ambientales solo pueden usarse para comparar animales dentro del mismo análisis. El valor de cría también nos va a determinar cuánto progresa genéticamente esa población de una generación a otra a lo largo de los años.

VC = h2 (Pi – µ)


h2: proporción de variación explicada por el valor de reproducción.

h: correlación entre el valor reproductivo y el fenotipo.
(Pi – µ): desviación de los individuos (Pi) de la media (µ). (3)

            Los VC se expresan para cada rasgo con una unidad de medida en particular (kg, lt, µm), se muestran positivos o negativos entre la diferencia genética de un animal y la base genética con la que se compara. También se puede definir como el doble de las desviaciones promedio de la progenie de un genotipo con respecto a la media de la población, siempre y cuando dicho genotipo haya sido apareado con una muestra al azar de la población.


El VC puede expresarse como valor absoluto:

VC = 2 * (media hijos) – media poblacional
VC = 2(μh)- μ0

o como desviación respecto de la media de la población:

VC = 2 * (media hijos – media poblacional)

VC = 2(μh – μ0). (7).

El valor fenotípico para un carácter, también llamado mérito individual, es su rendimiento en  relación con determinado carácter y con respecto a la media poblacional. Está compuesto por el valor genotípico y la desviación ambiental, en donde el genotipo atribuye cierto valor al individuo y el ambiente causa una desviación de dicho valor en una u otra dirección (5).  

F= μ + G + M

F= valor fenotípico.

μ= media poblacional para el carácter.
G= valor genotípico.

M= efecto ambiental.

A modo de ejemplo (fig. 3) en un rodeo donde la media poblacional es de 200 kg, se mide el peso al destete como carácter cuantitativo en 3 terneros (A, B y C). Los valores genotípicos de cada uno son 5 kg para el A, 20 kg para el B y 10 kg para el C, con una influencia del ambiente de  5 kg, 40 kg y -30 kg respectivamente. Estos valores son específicos de este carácter para cada animal.

Se determinó que el mérito individual en:
Toro A: 210 kg. Está por encima de la media gracias a que posee un valor genotípico de +5 kg y un buen ambiente.
Toro B: 260 kg. Su ventaja de +60 kg con respecto a la media es debido al valor genotípico y además tuvo un mejor efecto ambiental que el promedio quizás por la influencia de la madre que fue buena lechera ya que la producción láctea tiene correlación positiva con el crecimiento del ternero hasta su destete.

Toro C: 180 kg. Posee una desventaja de -20 kg con respecto a la media a pesar de que tiene un buen valor genotípico porque afrontó condiciones ambientales desfavorables (mala nutrición o enfermedad).

Figura 3. Representación gráfica del peso al destete de tres terneros, con influencia genotípica y ambiental.

Este es un ejemplo hipotético para explicar gráficamente, en realidad no se conoce el valor genotípico ni el efecto ambiental en un individuo, solo se puede medir directamente el valor fenotípico.

Aplicación del valor de cría: selección genética


            Una herramienta de conocimiento para poder elegir un buen reproductor de acuerdo al objetivo que se quiere alcanzar, al medio ambiente, mercado, trabajo, etc., es la selección genética, que permite presentar avances permanentes y continuos, teniendo en cuenta los caracteres de relevancia económica tales como fertilidad, crecimiento y área del ojo de bife.

Para elegir al mejor reproductor se estima la heredabilidad de ese carácter en la población. Esta varía de 0 a 1, en donde se determina que una heredabilidad cercana a cero indica que casi toda la variabilidad en un rasgo entre los animales se debe a factores ambientales, con muy poca influencia de las diferencias genéticas, y las cercanas a uno casi toda la variabilidad en un rasgo proviene de diferencias genéticas con muy poca contribución de factores ambientales (6).

            La heredabilidad es un concepto estadístico (representado como h²) que describe qué parte de la variación en un rasgo dado puede atribuirse a la variación genética. Es un rasgo específico de una población en un entorno determinado y puede cambiar con el tiempo a medida que cambian las circunstancias (6). Este parámetro genético indica el grado en que la superioridad de los padres será observada en su descendencia. Para realizarla correctamente, se calcula mediante correlación o regresión los cuales requieren de mucha información, no solo un registro fenotípico de cada individuo de la población sino también tener en cuenta si hay o no parentesco entre esos individuos ya que este influye mucho en la estimación de la heredabilidad por la poca variabilidad. Por ello se hace con análisis de pedigrí porque hay características que no se pueden medir en todos los individuos por igual (ej.: en el toro la producción de leche debe medirse en las hijas, madres o abuelas, cuanto más cercano es el parentesco más precisa es la estimación de heredabilidad).

En la figura 4 se observa como se refleja el progreso genético en una población mediante la selección de individuos con valores en el extremo positivo de la curva de una población original, comparando caracteres con distinta heredabilidad. Cuando la heredabilidad del carácter es 0, no existe progreso genético alguno, la influencia completa está dada por el ambiente. Cuando la heredabilidad es 1, el progreso es total hacia la media de los individuos usados como reproductores y no existe influencia alguna por parte del ambiente. Por último, cuando la heredabilidad toma valores entre 0 y 1, el progreso genético de la población es más gradual en dirección hacia los individuos seleccionados.

Fig. 4. Indica que h2 es siempre positiva (de 0 a 1). (11).

En una curva normal se eligen los individuos que están a la derecha o a la izquierda de la curva según lo que se quiera seleccionar. Por ejemplo, si se quiere ganar un menor desarrollo de grasa convienen los que están a la izquierda y si se quiere ganar litros de leche convienen los animales que están a la derecha de la curva. No sirve quedarse con el promedio porque se vuelve a hacer lo mismo en la siguiente generación y el objetivo es tender a quedarse con los mejores.

La heredabilidad en este caso permite establecer un ranking de productores  al multiplicarla por la diferencia del valor fenotípico con respecto a la media de cada animal.

 Diferencias esperadas de progenie (DEPs)

Los DEPs expresan las diferencias previsibles en la próxima generación a partir del uso de un reproductor controlado al que se le estima el valor genético.
            Este análisis es la herramienta disponible más precisa para mejorar genéticamente una característica ya que nos aporta una predicción del comportamiento productivo que se esperaría de los hijos de un progenitor en ese determinado carácter, en comparación con los hijos de otros progenitores que son sometidos a la misma evaluación. Este no es indicador de un buen o mal comportamiento productivo, ya que esto último también está determinado por las condiciones ambientales. Se expresan como un valor positivo o negativo en la unidad en la que se esté midiendo dicha característica y están siempre acompañados de un valor de confiabilidad. 

Se puede decir que es la mitad del valor de cría predicho (9).

La confiabilidad o precisión indica que tan aproximada es la diferencia esperada de progenie respecto al valor genético real del animal. Entre más información se utiliza en el análisis, mayor es el valor de confiabilidad para esta característica y dependiendo de la cantidad de información el resultado varía entre 0 y 1. Entre más alta la confiabilidad menor es el cambio que se esperaría en el DEP al agregar información de más descendientes de un animal (8). 

La repetibilidad también le da confianza al productor siendo una medida de fortaleza de la relación entre registros repetidos de un mismo carácter en un individuo, que se utiliza para determinar qué tan eficiente es ese carácter en la generación presente de animales en base a registros previos.

 Fig. 5 Por Semenx beef Uruguay (catálogo de venta de bovinos)

                                                                                                                                               

En un catálogo (Fig. 5) para elegir un reproductor macho es importante conocer el DEP de cada uno ya que es un buen método para compararlos fácilmente entre sí y determinar qué animal conviene seleccionar. Esto se realiza en los machos debido a que son capaces de preñar muchas hembras, es decir, transmitir su superioridad fenotípica a toda la descendencia.

Conclusión


            El valor de cría nos permite seleccionar a los futuros reproductores para una determinada característica de importancia para la producción y lograr una mejora genética generación tras generación con el fin de satisfacer las necesidades y llegar al objetivo de cada productor a través de caracteres cuantitativos de mayor importancia económica, ya que estos datos le brindan confiabilidad. Es importante que el productor a la hora de seleccionar sus reproductores tenga en cuenta los catálogos de venta ya que estos son de confianza y no solo los caracteres fenotípicos que tal vez no son tan acertados a la hora de elegir un reproductor. Además, si se eligen más de una característica a mejorar, la selección debe ser independiente una de otra, ya que mientras menos caracteres se elijan, mayor y más rápido va a ser el progreso genético en su población.

            Por otra parte, en cualquier población que se trabaje, el ambiente debe presentar las mejores condiciones posibles para los animales con los que se trabaja, es decir, el productor debe procurar que todas las necesidades de los animales estén cubiertas, tengan acceso a alimento adecuado y suficiente, agua limpia, cuidados médicos, estén libres de estrés, etc. ya que, como se menciona al principio, cuanto mejores sean las condiciones ambientales, mejor se van a expresar las características genéticas de éstos animales y mejor se va a notar la diferencia entre los individuos rankeados. A su vez, la/s raza/s que debe elegir el productor deben estar cómodamente adaptadas al clima existente en su chacra/campo y consigan satisfacer sus necesidades en ésta, ya que si tenemos una raza adaptada a las condiciones de temperatura, humedad, alimento específicas de un clima en particular y la colocamos en otro clima que no cumpla esas condiciones, por más que el productor se esfuerce, los animales no van a alcanzar su máximo potencial productivo. 

Bibliografía

  • Barbadilla, A. Tema 9: Herencia cuantitativa.
  • Cappello Villada, J. S. Diplomatura Superior en Producción Animal de Rumiantes (2018). Fac. de Cs. Veterinarias UNNE – INTA Mercedes Dezetter, C. Genetic evaluation: Estimated breeding value/Definition. Genetics of dairy production
  • Genética Cuantitativa (Guía introductoria al tema). Facultad de Ciencias Veterinarias [Apunte de cátedra]. Universidad Nacional del Centro de la Provincia de Buenos Aires.
  • Genghini, R.; Bonvillani, A.;Wittouck, P.;Echevarría, A. INTRODUCCIÓN AL MEJORAMIENTO ANIMAL (2002). Cursos de Introducción a la Producción Animal. FAV UNRC.
  • Genetics Home Reference. What is heredability? (2019) US National Library of Medicine
  • Genética de poblaciones. Valor de cría: fundamentos. UBA
  • Iglesias, G. [GabyIglesias]. (2016, Junio 2018) Valor de cría y DEPs (diferencia esperada en la progenie). Recuperado de YouTube
  • Kor Oldenbroek and Liesbeth van der Waaij, 2015. Textbook Animal Breeding and Genetics for BSc students. Centre for Genetic Resources The Netherlands and Animal Breeding and Genomics Centre, 2015. Groen Kennisnet.
  • La situación de los recursos zoogenéticos mundiales para la alimentación y la agricultura (2010), editado por Barbara Rischkowsky y Dafydd Pilling. Roma Traducción de la versión original en inglés, 2007)
  • Robledo, G. Modelo Genético y Tipo de Caracteres  (2013). Cátedra de genética – Curso de genética de poblaciones. Facultad de ciencias veterinarias [Apunte de cátedra]. Universidad de Buenos Aires, Argentina.

Monografías de Alumnos: CRISP

Su aplicación en Mosquitos causantes de la Malaria

Palabras Clave: Malaria, Mosquito Transgénico, CRISPR-Cas9, Deriva Génica. 

Resumen: En el presente escrito se evalúan, dentro de un marco teórico, cómo se podrían modificar genéticamente los mosquitos portadores del agente causal de la malaria, un protozoario del género Plasmodium, utilizando el método de CRISPR-Cas9 sobre los insectos dentro del laboratorio, su posterior liberación en el medio ambiente, y su efectividad e impacto como posible vía para generar una deriva génica dentro de la población de mosquitos salvajes, considerando además los actuales métodos de control de la malaria, tanto los de origen genéticos como  los convencionales.

La malaria, también conocida como Paludismo, en el ser humano, es una enfermedad parasitaria causada por la infección de una o más de las especies del parásito protozoario intracelular Plasmodium ya sean Plasmodium falciparum, ovale, vivax y/o malariae (Heymann ,2011). Es una enfermedad mortal que es causada por dicho Plasmodium y transmitida por la picadura de mosquitos hembra del género Anopheles, los llamados vectores del paludismo.

Según la OMS: P. falciparum es el parásito causante del paludismo más prevalente en el continente africano. Es responsable de la mayoría de las muertes provocadas por el paludismo en todo el mundo. En cambio, P. vivax es el parásito causante del paludismo dominante en la mayoría de los países fuera del África subsahariana.

Se calcula que en 2016 hubo 216 millones de casos de paludismo en 91 países, las muertes fueron de 445 mil personas, lo que es una cifra demasiado alta ya que se trata de una enfermedad prevenible y tratable de manera relativamente fácil, sin embargo, muchas de las áreas afectadas son de recursos extremadamente precarios y bajo constante conflicto civil y militar, lo cual dificulta mucho no solo el alcance de ayuda exterior sino cualquier tipo de intervención interna.

La prevención de esta enfermedad se basa fuertemente en la lucha antivectorial para reducir la transmisión del paludismo. Según la organización mundial de la salud en 2018: “Para el control efectivo del vector, recomienda proteger a toda la población que se encuentra en riesgo de infectarse. Hay dos métodos de lucha contra los vectores que son eficaces en circunstancias muy diversas: los mosquiteros tratados con insecticidas y la fumigación de interiores con insecticidas de acción residual.”

Entre 2015-2017 se realizó la distribución de 624 millones MTI o mosquiteros tratados con insecticida, (principalmente de larga duración), un aumento sustancial con respecto a los 465 millones del 2012-2014. De todos estos, el 82% o 459 millones, fue entregado en la región de áfrica subsahariana. (OMS, 2018)

La malaria es endémica en más de 100 países, especialmente en América Central y del Sur, República Dominicana, Haití, África, Asia (India, Sureste asiático y Oriente Medio) y Pacífico Sur.

Palabras Clave: Malaria, Mosquito Transgénico, CRISPR-Cas9, Deriva Génica.

En el presente escrito se evalúan, dentro de un marco teórico, cómo se podrían modificar genéticamente los mosquitos portadores del agente causal de la malaria, un protozoario del género Plasmodium, utilizando el método de CRISPR-Cas9 sobre los insectos dentro del laboratorio, su posterior liberación en el medio ambiente, y su efectividad e impacto como posible vía para generar una deriva génica dentro de la población de mosquitos salvajes, considerando además los actuales métodos de control de la malaria, tanto los de origen genéticos como los convencionales.

 Figura 1. Distribución mundial de la malaria. Fuente: OMS, 2010

.

En el 2017 los países endémicos de Malaria invirtieron 3,1 mil millones de dólares para el control y eliminación de la enfermedad, 2,2 mil millones se gastaron en la región de África seguida por 300 millones en el sudeste asiático, en las Américas 200 millones y el este  Mediterráneo y Pacífico Occidental 100 millones cada uno, a pesar de esta cantidad de inversión no se llega a alcanzar las metas de la ETM (Estrategia Técnica mundial contra la Malaria), esta tiene como objetivo una reducción del 40 por ciento de incidencia en casos de malaria a nivel mundial. Para alcanzar las metas de la ETM a 2030 se estima que la financiación anual para la malaria tendrá que aumentar en al menos 6,6 mil millones por año

hasta el 2020.

“El conocimiento del ciclo de vida de este parásito indica que el estadio más vulnerable del Plasmodium es el ooquiste encontrado en el intestino medio (de sólo cinco ooquistes por insecto), razón que lo convierte en el primer blanco de ataque empleando mosquitos

transgénicos que expresen moléculas efectoras antiespasmódicas”.(Noguez Moreno, et al 2017)

A lo largo de los años los avances en la ciencia y tecnología genética gracias a quienes la desempeñan, ya sean investigadores, científicos o genetistas nos ayudan a comprender y hasta poder solucionar mediante el uso de ingeniería genética problemas relacionados a la salud humana y animal.

Los métodos de biología molecular y de las ciencias genómicas generan conocimientos más precisos de la fusión y expresión genética, lo que es fundamental para el entendimiento de la fisiología molecular de insectos y en la generación de MTs (mosquitos transgénicos) para el control de insectos y las ETV (enfermedades transmitidas por vectores).(Noguez Moreno, et al., 2017)

Históricamente dentro de las estrategias utilizadas para el control de enfermedades vectoriales con respecto a la manipulación genética, nos podemos encontrar con una amplia variedad de enfoques y diferentes acercamientos a la problemática. Segun Noguez Moreno,  et al., 2017  estos pueden dividirse en un Control “Clásico” y el uso de Mosquitos Transgénicos o MTs; Así, el primero se enfoca en generar insectos estériles o bien con reproductibilidad reducida por medio de productos químicos o radiación sobre los huevos y luego que estos sean liberados al medio ambiente natural. Si bien este método fue el más utilizado después de la segunda guerra mundial por más de 4 décadas, debido al coste de mantenimiento del equipo, de la mano de obra y de la liberación de los insectos, prácticamente ha quedado en desuso.(Noguez Moreno et al., 2017)

Figura 2: Fuente: Noguez Moreno et al.,2017

El uso de MTs por otro lado cobra impulso con cada nuevo avance en el área de la genética; Pueden encontrarse así los Mosquitos Refractarios, es decir, que expresan una cualidad que los hace inmunes a la infección del agente en si, los Mosquitos Transmisores de Genes Letales de Uno o Dos Componentes, que básicamente consiste en introducir un gen que se comporta como letal (produce la muerte del portador) cuando se encuentra en heterocigosis, los Mosquitos con Fenotipo sin Vuelo, donde se les genera una modificación en su capacidad para volar y son eliminados naturalmente por depredadores o bien no pueden alimentarse ni volar, y por último, pero no menos importante la Deriva Génica o Genéticamente Dirigido (GD por Gene Drive en inglés), donde se fuerza la imposición de la presencia de un alelo sobre otro dentro de una población generando por ende la desaparición de este último.(Noguez Moreno, et al., 2017)

Naturalmente la deriva génica es una fuerza evolutiva que ocurre como un cambio en las frecuencias genéticas debido a un resultado de eventos aleatorios de una generación a la otra, puede ser muy efectiva y marcada en poblaciones pequeñas, además podría resultar en la fijación de un alelo, es decir, que este termine siendo el único presente en la población.

Figura 3. El concepto de genética dirigida (del inglés Gene Drive: GD) lo podemos ejemplificar en un caso hipotético de un transgen que bloquea la transmisión de la malaria (pero que no tiene valor selectivo en la población de insectos). Se podría impulsar el incremento en su frecuencia genética en la población, sustituyendo a los silvestres (sin color) a través de una construcción genética que incluya un gen que proporciona una ventaja selectiva (Gene Drive o GD) (en rojo). Genética dirigida es lo mismo que decir deriva génica.  Fuente: Noguez Moreno, et al., 2017

De manera artificial con el fin de modificar poblaciones; la deriva génica se puede usar  tanto como para que una nueva población de Mosquitos Refractarios reemplace a otra vieja o para la supresión gradual de una especie al generar deriva génica sexual. Los métodos más comunes son los Elementos Medea, (elementos alélicos “egoístas” que se imponen sobre su contraparte al generar la muerte de la cría que carece del elemento), el uso de las Bacterias del Género Wolbachia, (el cual se comporta también como elemento génico egoísta y de carácter simbiótico que puede transmitirse por vía materna) y la aplicación de CRISPR-Cas9, tanto sobre un gen como también sobre la frecuencia sexual dentro de una población.

Figura 4. Fuente: Noguez Moreno, et al., 2017.

La manipulación de la frecuencia de un gen con CRISPR-Cas9 consiste básicamente en introducir dentro de un gen esencial un segmento exógeno con la información que dotaría de inmunidad al individuo contra el agente, así cualquier intento de eliminar esta seccion por parte del sistema natural de reparación del ADN resultaría en la muerte del individuo en lugar de generar una especie de “resistencia”, y si a esto se le suman más segmentos exógenos el proceso de resistencia se vuelve indetectable poblacionalmente.

La manipulación de la frecuencia de un sexo usando CRISPR-Cas9 es una de las estrategias más nuevas, recién introducida en 2016, y consiste en que Cas9 ataque un gen alosómico que reside en uno de los cromosomas sexuales con una incidencia en el nacimiento de machos de casi un 90%, y debido a que estos no son hematofagos, cualquier transmisión de vía salivaria quedaria incapacitada,  además esto facilita la deriva génica ya que solo los machos la producen y no las hembras.

Figura 5.Genética dirigida (GD) utilizando el sistema CAS9-ARN guía. Las ventajas incrementan introduciendo varias unidades de ARN guía, lo que aumenta la frecuencia de corte y dificulta la evolución de alelos resistentes a GD a niveles indetectables. Al elegir sitios diana dentro de un gen esencial, debe ser modificados para hacer un alelo resistente e incluirlo en la construcción para unirlos a la construcción genética que lleva el sistema CAS9-ARN guía, y tanto al gen marcador, como al gen refractario (por ejemplo). Cualquier acontecimiento que elimine los sitios blanco del sistema CAS9-ARN, producirán letalidad en lugar de crear una unidad de alelo resistente, lo que aumenta aún más la robustez de la construcción genética GD y favoreciendo la sustitución poblacional de insectos. Fuente: Noguez Moreno, et al., 2017

La tecnología CRISPR/Cas9 es una herramienta molecular utilizada para “editar” o “corregir” el genoma de cualquier célula. Sería algo así como unas tijeras moleculares que son capaces de cortar cualquier molécula de ADN haciéndolo de una manera muy precisa y controlada. La capacidad de cortar el ADN es lo que permite modificar su secuencia, eliminando o insertando nuevo ADN, se basa en un sistema natural de defensa bacteriano contra los virus bacteriofagos. Estos virus infectan bacterias al inyectarle su material genético, luego este se aprovecha de la maquinaria interna para fabricar otras réplicas de sí mismo, generalmente mata a la bacteria en el proceso. Si la bacteria sobrevive puede utilizar fragmentos del ADN vírico para incluirlo dentro de su propio material genético y así contar con una “copia de seguridad” que permite identificar rápidamente una posterior invasión de ese mismo material. (Ann Ran, et al., 2013)

Figura 6. Ilustración de cómo ingresa originalmente el material genico viral dentro de la bacteria, y los pasos subsecuentes para registrarlo y utilizarlo como propio dentro del sistema defensivo CRISPR. Fuente:Gantz, 2015.

El ADN tomado del virus son segmentos de bases repetidas múltiples veces y a su vez estos fragmentos también se repiten dentro del propio ADN, no suelen ser muy largos y están condensados, por esto se llaman repeticiones palindrómicas cortas agrupadas y regularmente espaciadas o Clustered Regularly Interspaced Short Palindromic Repeats o CRISPR en inglés. (Ann Ran et al, 2013)

“Cuando un virus entra dentro de la bacteria toma el control de la maquinaria celular y para eso interacciona con distintos componentes celulares. Las bacterias que tienen este sistema de defensa tienen un complejo formado por una proteína Cas unida al ARN producido a partir de las secuencias CRISPR. Entonces el material génico del virus puede interaccionar con este complejo, al ocurrir esto el material genético viral es inactivado y posteriormente degradado. Pero este sistema va más allá. Las proteínas Cas son capaces de coger una pequeña parte del ADN viral, modificarlo e integrarlo dentro del conjunto de secuencias CRISPR. De esa forma, si esa bacteria o su descendencia se encuentra con ese mismo virus, ahora inactivará de forma mucho más eficiente al material genético viral. Es, por lo tanto, un verdadero sistema inmune de bacterias”. (ver Figura 6) (Moran, 2015)

Esto puede aplicarse al ADN de eucariotas, con un CRISPR-Cas9 sintético y en un laboratorio, conociendo la secuencia que se desea cambiar, se puede generar un ARN complementario a dicha secuencia y agregarla al CRISPR-Cas9, el cual termina cortando esta sección. Luego pueden ocurrir dos posibles resultados derivados de las dos grandes vías existentes para la reparación del ADN, y estos son la vía de unión de extremos no homólogos, cuya sigla en inglés es NHEJ, que presenta tendencia a errores y la vía de reparación dirigida por homología cuya sigla en inglés es HDR y es la que presenta una mayor fidelidad, así que puede optarse por una u otra dependiendo del resultado que se busque con respecto a la modificación de ese gen.

Figura 7. La edición de genomas a través de ARN guía-CAS9. La nucleasa Cas9 y la guía de ARN, debe ser primero introducida en la célula diana. Esto se logra mediante introducción por ingeniería genética. El ARN guía dirige a Cas9 para unir secuencias de ADN diana. En el blanco se forma una burbuja que debe estar flanqueada por un adecuado motivo adyacente (PAM;Motivo adyacente de protoespaciador), con secuencia NGG, que refiere a que N es cualquier nucleobase seguida de dos nucleobases de Guanina. Sí el ARN guía es idéntica con solo unos desajustes en el extremo 5 ́del espacio de hibridación, Cas9 cortará las dos cadenas del ADN generando extremos romos. Si se suministra con una plantilla de reparación que contiene los cambios deseados y homología a las secuencias a ambos lados de la ruptura, la célula puede utilizar la recombinación homóloga para reparar la ruptura mediante la incorporación de la plantilla de la reparación en el cromosoma. De lo contrario, la ruptura será reparada uniendo los extremos, lo que resulta en la pérdida de algunos nucleótidos y la interrupción del gen. Fuente: Noguez Moreno, et al.,2017

 

La activación de la vía NHEJ ocurre cuando no hay presencia de un molde reparador, así las DSB (Double Strand DNA Break) son unidas dejando “cicatrices” en forma de deleciones o adiciones, es decir, mutaciones. De esta manera se usa la vía NHEJ para producir “knockout” génico sobre secciones indeseables del ADN, al exponer codones de stop de manera prematura.

La activación de la vía HDR, si bien es mucho más precisa, ocurre a frecuencias mucho más variables que NHEJ, y suele activarse naturalmente en células que se están dividiendo, además su eficiencia puede variar dependiendo del tipo de célula y su estado de división, así como del lugar y amplitud del segmento modificado de ADN. La vía HDR produce modificaciones muy puntuales y definidas sobre un locus frente a un molde reparador introducido exógenamente, el cual puede ser la clásica doble hebra de ADN complementario y antiparalelo o una sola hebra de ADN, este último método puede ser útil para introducir mutaciones de segmentos extremadamente pequeños (tan chicos como un solo nucleótido) dentro del genoma, de manera simple y rápida.(Ann Ran, et al., 2013)

Quizás la propiedad más importante es que CRISPR-Cas9 puede no solo cortar, sino que (por medio de modificaciones artificiales dentro del laboratorio) introducir una nueva secuencia de ADN y por lo tanto, nuevos genes dentro de la cadena, permitiendo un gran abanico de alteraciones sobre prácticamente cualquier organismo. En este caso se planteará el uso teórico de CRISPR-Cas9 tipo 2, el cual utiliza crARN (CRISPR ARN asociado), que actúa como guía codificante para ARN, y otro segmento de crARN de trans-activación o trancrARN, el cual facilita el proceso. Cada uno de estos crARN está compuesto de una secuencia de 20 nucleótidos guia.(Ann Ran, et al, 2013).

Un estudio realizado por Gantz, et al., en 2015 estudia o analiza  la modificación de Anopheles stephensi por medio de CRISPR-Cas9 y la producción de MTs, al alterar genéticamente uno de los cromosomas de los machos, luego copiaron el segmento de 17.000 pares de bases al cromosoma homólogo utilizando la vía de reparación HDR de una manera exacta y en un sitio específico del ADN, de esta manera y junto a la deriva génica producida en la naturaleza, se logró una incidencia del 99,5% aproximadamente de la frecuencia del gen sobre la descendencia de la cruza entre los machos transgénicos y las hembras salvajes. En contraste con esto, se encontró que la modificación sólo en las hembras no conlleva al mismo éxito, debido a que los cromosomas no son reparados por la vía HDR, más exacta, sino por NHEJ; Así es como se producen muchas mutaciones en el proceso y por lo tanto, se termina dando una herencia de tipo pseudo mendeliana de los genes modificados, y no tiene el mismo éxito, de esta manera se estima que se podría lograr la erradicación de la enfermedad en unas 10 generaciones de mosquitos, es decir, en un periodo de aproximadamente 1 año. Este modelo que es completamente teórico está basado en el uso exclusivo de mosquitos machos transgénicos liberados al medio ambiente ya que ellos son quienes tienen la posibilidad de generar una deriva génica, aunque hay un cierto aporte por parte de la descendencia de las subsecuentes hembras modificadas hijas de los machos liberados.

Conclusiones y Comentarios Finales:

CRISPR-Cas9 es una poderosísima herramienta para poder moldear al mundo y los animales que lo habitan, pero tiene como limitación que es demasiado nueva y no ha sido testeada en el campo lo suficiente, de esta manera no termina habiendo una respuesta definitiva de si será o no la salvación a todas las ETV y otras enfermedades relacionadas, aun así el futuro necesitará cada vez más nuevas y mejores estrategias para combatirlas, y más si se considera que el presupuesto de la OMS con la ETM debe duplicarse de 3 mil millones actuales a 6 mil millones en menos de un año si se quiere seguir con el plan estimado, es decir, reducir el paludismo en un 40% para el 2030.  Tal vez la deriva génica dada por los mosquitos transgénicos no sea la respuesta, pero todavía es demasiado pronto para decirlo, ya que si bien es fácil quitar una proteína o lípido que es aprovechado por un virus o un parásito, esto es biología, pero nada cumple solo una función ni es simplemente tan fácil, debido a que esa proteína podría cumplir muchas otras funciones importantes en otro lado, así que habrá que considerar los pros y contras, ¿cuáles podrían ser las futuras repercusiones ambientales?, ¿es factible económicamente hablando?, y tal vez más importante, ¿cuánto pesan estos argumentos frente al medio millón de personas que mueren al año?.

Bibliografía

Acceso. (2019). Retrieved from https://www.who.int/es

Ann Ran, F., & Scott, D. (2013). Genome engineering using the CRISPR-Cas9 system [Ebook].

Gantz, V. (2015). Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi [Ebook]. California.

Heymann, D. (2013). El control de las enfermedades transmisibles [Ebook] (19th ed., pp. 485-508). Washington DC.

Moran, A. (2015). ¿Qué es la tecnología CRISPR/Cas9 y cómo nos cambiará la vida? [Ebook].

Noguez Moreno, R. (2017). Nuevas estrategias de control vectorial:mosquitos transgénicos[Ebook]. México.

Blog con modificaciones e imágenes

Hola de vuelta, quería avisarles que hay varias modificaciones en el Blog

DELECION
Ejemplo de la deleción de un nucelótido dentro del marco de lectura de un gen. Consecuenncia corrimiento del marco de lectura. No hay pausas o comas ni puntos que delimiten los codos, solo quedan delimitados por el codón de incio AUG. Por Gabriela Iglesias

Quería comentarles que se han incorporado nuevas imágenes a varias páginas, algunas de las cuales, ha llevado mucho tiempo hacer, pero están en muy buena calidad. Espero que les sirvan y recuerden que si van a copiarlas, deben citar la fuente por los derecho de autor. Lo mismo para los textos de cada página que son de mi autoría. En la página Bibliografía les dice como citar al blog en distintos formatos. (Bibliografía)

Algunas de las páginas con algunas imágenes nuevas son la de : Replicación y Transcripción, Síntesis de proteínas o traducción,   Mutaciones puntuales, Interpretación de las Leyes de Mendel, Alteraciones cromosómicas, y genética del sexo.

Incorporé además una nueva autoevaluación de mecanismos de interacción génica que está al final de todo de la página.

Espero que les gusten

Saludos a todos

Nuevo estilo del Blog

Nuevo estilo del Blog

cromosomas X e Y
Regiones homólogas y no homólogas de los cromosomas X e Y por Gabriela M. Iglesias

Hola a todos, he estado trabajando mucho en hacer que el blog tenga la mayor cantidad de imágenes propias. Al actualizar páginas, no se reciben notificaciones, ni se registra como algo nuevo, así que quería expresarles estos cambios en esta entrada.

Nuevo estilo del Blog

Hola a todos, he estado trabajando mucho en hacer que el blog tenga la mayor cantidad de imágenes propias. Al actualizar páginas, no se reciben notificaciones, ni se registra como algo nuevo, así que quería expresarles estos cambios en esta entrada.

Lamentablemente, no he podido manejar eficazmente el nuevo diseño, aparecieron problemas en google y empezaron a bajar las visitas a la página dramáticamente

Se juntaron muchas cosas, nuevas formas de publicar en la plataforma de wordpress y muchas exigencias para el sitio para comercializarlo. nuevos Robots de google que buscan errores y la aparición de los diseños de páginas para vista en teléfonos móviles. Todo eso implicó un trabajo de re edición de todas las páginas y casi todas las entrada del Blog que aún sigo trabajando en eso. Lamentablemente no soy experta en SEO ni en elaboración de páginas, así que he vuelto al plan anterior de wordpress donde solo pago el nombre de la página. En Google el Blog había desaparecido por completo, así que sigo solicitando nuevas indexaciones a medida que corrijo errores

espero se solucione pronto

saludos

Gaby